Fan Jingxin, Zhao Mingfu, Huang Li, Tang Bin, Wang Lurui, He Zhong, Peng Xiaoling
Central Hospital Affiliated to Chongqing University of Technology (Chongqing Seventh People's Hospital), Chongqing, China.
School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing, China.
Front Comput Neurosci. 2024 Dec 18;18:1505746. doi: 10.3389/fncom.2024.1505746. eCollection 2024.
Automatic sleep staging is essential for assessing sleep quality and diagnosing sleep disorders. While previous research has achieved high classification performance, most current sleep staging networks have only been validated in healthy populations, ignoring the impact of Obstructive Sleep Apnea (OSA) on sleep stage classification. In addition, it remains challenging to effectively improve the fine-grained detection of polysomnography (PSG) and capture multi-scale transitions between sleep stages. Therefore, a more widely applicable network is needed for sleep staging.
This paper introduces MSDC-SSNet, a novel deep learning network for automatic sleep stage classification. MSDC-SSNet transforms two channels of electroencephalogram (EEG) and one channel of electrooculogram (EOG) signals into time-frequency representations to obtain feature sequences at different temporal and frequency scales. An improved Transformer encoder architecture ensures temporal consistency and effectively captures long-term dependencies in EEG and EOG signals. The Multi-Scale Feature Extraction Module (MFEM) employs convolutional layers with varying dilation rates to capture spatial patterns from fine to coarse granularity. It adaptively fuses the weights of features to enhance the robustness of the model. Finally, multiple channel data are integrated to address the heterogeneity between different modalities effectively and alleviate the impact of OSA on sleep stages.
We evaluated MSDC-SSNet on three public datasets and our collection of PSG records of 17 OSA patients. It achieved an accuracy of 80.4% on the OSA dataset. It also outperformed the state-of-the-art methods in terms of accuracy, F1 score, and Cohen's Kappa coefficient on the remaining three datasets.
The MSDC-SSRNet multi-channel sleep staging architecture proposed in this study enhances widespread system applicability by supplementing inter-channel features. It employs multi-scale attention to extract transition rules between sleep stages and effectively integrates multimodal information. Our method address the limitations of single-channel approaches, enhancing interpretability for clinical applications.
自动睡眠分期对于评估睡眠质量和诊断睡眠障碍至关重要。虽然先前的研究已经取得了较高的分类性能,但目前大多数睡眠分期网络仅在健康人群中得到验证,忽略了阻塞性睡眠呼吸暂停(OSA)对睡眠阶段分类的影响。此外,有效提高多导睡眠图(PSG)的细粒度检测以及捕捉睡眠阶段之间的多尺度转换仍然具有挑战性。因此,需要一种更广泛适用的网络用于睡眠分期。
本文介绍了MSDC-SSNet,一种用于自动睡眠阶段分类的新型深度学习网络。MSDC-SSNet将脑电图(EEG)的两个通道和眼电图(EOG)信号的一个通道转换为时频表示,以获得不同时间和频率尺度的特征序列。一种改进的Transformer编码器架构确保时间一致性,并有效捕捉EEG和EOG信号中的长期依赖性。多尺度特征提取模块(MFEM)采用具有不同扩张率的卷积层,从细粒度到粗粒度捕捉空间模式。它自适应地融合特征权重以增强模型的鲁棒性。最后,整合多个通道的数据以有效解决不同模态之间的异质性,并减轻OSA对睡眠阶段的影响。
我们在三个公共数据集以及我们收集的17名OSA患者的PSG记录上评估了MSDC-SSNet。它在OSA数据集上实现了80.4%的准确率。在其余三个数据集上,它在准确率、F1分数和科恩卡帕系数方面也优于现有最先进的方法。
本研究提出的MSDC-SSRNet多通道睡眠分期架构通过补充通道间特征增强了广泛的系统适用性。它采用多尺度注意力来提取睡眠阶段之间的转换规则,并有效整合多模态信息。我们的方法解决了单通道方法的局限性,增强了临床应用的可解释性。