文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用非接触式无创电磁头盔评估人类重复运动活动中神经元产生的内在电磁场。

Evaluating the Intrinsic Electromagnetic Field Generated by Neurons From Repetitive Motor Activities in Humans With a Non-contact Non-invasive Electromagnetic Helmet.

作者信息

Brazdzionis James, Wiginton James, Patchana Tye, Savla Paras, Hung James, Zhang Yongming, Miulli Dan E

机构信息

Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA.

Electrical Engineering, Quasar Federal Systems, San Diego, USA.

出版信息

Cureus. 2022 Mar 9;14(3):e23006. doi: 10.7759/cureus.23006. eCollection 2022 Mar.


DOI:10.7759/cureus.23006
PMID:35464528
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9001246/
Abstract

Introduction The actions of neurons are dependent on electrochemical signal pathways mediated by neurotransmitters and create measurable electrical charges. These charges have been found to be measurable through neuroimaging technologies and now through a novel non-contact non-invasive sensor without supercooling. Identifying whether this technology can be appropriately interpreted with synchronized motor well-defined activities in vivo may allow for further clinical applications. Methods A non-contact, non-invasive helmet constructed and modified using shielding technology with proprietary magnetic field sensors was utilized to measure the brain's electromagnetic field (EMF). Human volunteers donned helmets and were asked to perform repetitive tapping exercises in order to identify waves consistent with tapping from the left and right hemispheres. A gyroscope was utilized to ensure that measured waves were not from micro-movement but were from neuronal firing. Multiple individuals were tested to evaluate the reproducibility of tapping and commonalities between individuals Results Right and left-sided tapping generated discernible wave changes from baseline measurements obtained by the helmet without a subject as well as differed from when the subject was at rest. Wave patterns varied from person to person but were overall similar in each subject individually. Shielding was necessary to identify signals but EMF was identified when shielding was transitioned from around the helmet to within the helmet design. Conclusion It is possible to measure in-vivo electromagnetic fields generated by the human brain generated by stereotyped tasks in a non-contact non-invasive manner. These waves were reliably obtained within each individual with some variability in morphology from subject to subject however were similar in each subject. Signals varied based on activity and stereotyped motor activities were identified. A helmet using shielding technology within the helmet itself was able to effectively identify EMF signals. Future analysis may focus on translating these waves into functional mapping for clinical applications.

摘要

引言 神经元的活动依赖于由神经递质介导的电化学信号通路,并产生可测量的电荷。现已发现,这些电荷可通过神经成像技术进行测量,如今还可通过一种无需超低温的新型非接触式无创传感器进行测量。确定这项技术是否能够在体内与明确的同步运动活动进行恰当解读,可能会推动进一步的临床应用。方法 使用带有专利磁场传感器的屏蔽技术构建并改装了一个非接触式无创头盔,用于测量大脑的电磁场(EMF)。人类志愿者戴上头盔,并被要求进行重复性敲击练习,以识别与左右半球敲击相一致的脑电波。使用陀螺仪确保所测量的脑电波并非来自微运动,而是来自神经元放电。对多名个体进行测试,以评估敲击的可重复性以及个体之间的共性。结果 左右侧敲击产生了与无受试者时头盔获得的基线测量值明显不同的波形变化,也与受试者休息时的波形不同。波形模式因人而异,但每个受试者个体的波形总体相似。屏蔽对于识别信号是必要的,但当屏蔽从头盔周围转移到头盔设计内部时,能够识别出电磁场。结论 有可能以非接触式无创方式测量人类大脑在定型任务中产生的体内电磁场。这些脑电波在每个个体中都能可靠地获得,尽管形态上存在一些个体差异,但每个受试者的脑电波相似。信号因活动而异,并且识别出了定型的运动活动。在头盔本身内部使用屏蔽技术的头盔能够有效识别电磁场信号。未来的分析可能集中于将这些脑电波转化为临床应用的功能图谱。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/f9e942f6ea47/cureus-0014-00000023006-i20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/138ce6ee8956/cureus-0014-00000023006-i01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/f21b19fdb301/cureus-0014-00000023006-i02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/b1b0bbf03b9d/cureus-0014-00000023006-i03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/2f9a950ec7b1/cureus-0014-00000023006-i04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/49bf6f38d1ee/cureus-0014-00000023006-i05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/b3701840198d/cureus-0014-00000023006-i06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/cd8e6e926a43/cureus-0014-00000023006-i07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/e0ac49ae9ce3/cureus-0014-00000023006-i08.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/a5cace20d106/cureus-0014-00000023006-i09.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/6e6112db2795/cureus-0014-00000023006-i10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/7dfe3206ed9b/cureus-0014-00000023006-i11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/395b818d0ee1/cureus-0014-00000023006-i12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/95a5065b9c88/cureus-0014-00000023006-i13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/65426e9042be/cureus-0014-00000023006-i14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/c152b8cde987/cureus-0014-00000023006-i15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/58913c11c343/cureus-0014-00000023006-i16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/b4558f906b9f/cureus-0014-00000023006-i17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/bb39dddfa19b/cureus-0014-00000023006-i18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/901ed0286d1c/cureus-0014-00000023006-i19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/f9e942f6ea47/cureus-0014-00000023006-i20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/138ce6ee8956/cureus-0014-00000023006-i01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/f21b19fdb301/cureus-0014-00000023006-i02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/b1b0bbf03b9d/cureus-0014-00000023006-i03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/2f9a950ec7b1/cureus-0014-00000023006-i04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/49bf6f38d1ee/cureus-0014-00000023006-i05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/b3701840198d/cureus-0014-00000023006-i06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/cd8e6e926a43/cureus-0014-00000023006-i07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/e0ac49ae9ce3/cureus-0014-00000023006-i08.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/a5cace20d106/cureus-0014-00000023006-i09.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/6e6112db2795/cureus-0014-00000023006-i10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/7dfe3206ed9b/cureus-0014-00000023006-i11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/395b818d0ee1/cureus-0014-00000023006-i12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/95a5065b9c88/cureus-0014-00000023006-i13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/65426e9042be/cureus-0014-00000023006-i14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/c152b8cde987/cureus-0014-00000023006-i15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/58913c11c343/cureus-0014-00000023006-i16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/b4558f906b9f/cureus-0014-00000023006-i17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/bb39dddfa19b/cureus-0014-00000023006-i18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/901ed0286d1c/cureus-0014-00000023006-i19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ff/9001246/f9e942f6ea47/cureus-0014-00000023006-i20.jpg

相似文献

[1]
Evaluating the Intrinsic Electromagnetic Field Generated by Neurons From Repetitive Motor Activities in Humans With a Non-contact Non-invasive Electromagnetic Helmet.

Cureus. 2022-3-9

[2]
Measuring the Electromagnetic Field of Human Subjects Using Induction Sensors and a Shielded Helmet Without the Need for a Shielded Room.

Cureus. 2022-4-13

[3]
Measuring the Electromagnetic Field of the Human Brain at a Distance Using a Shielded Electromagnetic Field Channel.

Cureus. 2022-3-29

[4]
Measuring Electromagnetic Field Activity Generated by Neurons In Vivo by Humans With Thoughts of Repetitive Motor Activities and Emotional Thoughts.

Cureus. 2022-3-20

[5]
The Use of Induction Sensors and Helmet-Based Shielding Technology to Identify Differences in Electromagnetic Fields in Patients With Cranial Neurological Disease Versus Healthy Controls.

Cureus. 2023-9-16

[6]
A Swine Model of Changes in the Neuronal Electromagnetic Field After Traumatic Brain Injury: A Pilot Study.

Cureus. 2023-7-12

[7]
A Swine Model of Traumatic Brain Injury: Effects of Neuronally Generated Electromagnetic Fields and Electromagnetic Field Stimulation on Traumatic Brain Injury-Related Changes.

Cureus. 2023-7-27

[8]
A Swine Model of Neural Circuit Electromagnetic Fields: Effects of Immediate Electromagnetic Field Stimulation on Cortical Injury.

Cureus. 2023-8-19

[9]
Novel Method of Electromagnetic Field Measurements of the Human Brain.

Cureus. 2022-2-7

[10]
Novel Method of Non-contact Remote Measurement of Neuronal Electrical Activity.

Cureus. 2018-9-28

引用本文的文献

[1]
Changes in Electromagnetic Activity Following Osteopathic Manipulative Treatment: A Novel Assessment Using Induction Sensors.

Cureus. 2025-7-26

[2]
Experiencing pain: electromagnetic waves, consciousness, and the mind.

Front Hum Neurosci. 2025-7-24

[3]
Progress to Date on Cranial Electromagnetic Field Stimulation to Modulate Brain Activity.

Cureus. 2025-5-22

[4]
Validation of Electromagnetic Field Sensor Performance Through Porcine Skulls: Implications for Neurostimulation and Recording Techniques.

Cureus. 2025-4-10

[5]
Localization of Brain Injuries Using Cranial Electromagnetic Fields.

Cureus. 2025-3-13

[6]
Synaptic sensitization in the anterior cingulate cortex sustains the consciousness of pain via synchronized oscillating electromagnetic waves.

Front Hum Neurosci. 2024-9-11

[7]
The Use of Induction Sensors and Helmet-Based Shielding Technology to Identify Differences in Electromagnetic Fields in Patients With Cranial Neurological Disease Versus Healthy Controls.

Cureus. 2023-9-16

[8]
A Swine Model of Traumatic Brain Injury: Effects of Neuronally Generated Electromagnetic Fields and Electromagnetic Field Stimulation on Traumatic Brain Injury-Related Changes.

Cureus. 2023-7-27

[9]
A Swine Model of Changes in the Neuronal Electromagnetic Field After Traumatic Brain Injury: A Pilot Study.

Cureus. 2023-7-12

[10]
Immunomodulatory Effect of Electromagnetic Field in the Treatment of Traumatic Brain Injury.

J Biotechnol Biomed. 2023

本文引用的文献

[1]
Novel Method of Electromagnetic Field Measurements of the Human Brain.

Cureus. 2022-2-7

[2]
Magnetoencephalography for localizing and characterizing the epileptic focus.

Handb Clin Neurol. 2019

[3]
One century of brain mapping using Brodmann areas.

Klin Neuroradiol. 2009-8

[4]
Integrating sensory and motor mapping in a comprehensive MEG protocol: clinical validity and replicability.

Neuroimage. 2004-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索