Opt Express. 2022 Mar 28;30(7):11479-11494. doi: 10.1364/OE.451215.
We present a deep learning approach to obtain high-resolution (HR) fluorescence lifetime images from low-resolution (LR) images acquired from fluorescence lifetime imaging (FLIM) systems. We first proposed a theoretical method for training neural networks to generate massive semi-synthetic FLIM data with various cellular morphologies, a sizeable dynamic lifetime range, and complex decay components. We then developed a degrading model to obtain LR-HR pairs and created a hybrid neural network, the spatial resolution improved FLIM net (SRI-FLIMnet) to simultaneously estimate fluorescence lifetimes and realize the nonlinear transformation from LR to HR images. The evaluative results demonstrate SRI-FLIMnet's superior performance in reconstructing spatial information from limited pixel resolution. We also verified SRI-FLIMnet using experimental images of bacterial infected mouse raw macrophage cells. Results show that the proposed data generation method and SRI-FLIMnet efficiently achieve superior spatial resolution for FLIM applications. Our study provides a solution for fast obtaining HR FLIM images.
我们提出了一种深度学习方法,可从荧光寿命成像 (FLIM) 系统获取的低分辨率 (LR) 图像中获得高分辨率 (HR) 荧光寿命图像。我们首先提出了一种理论方法,用于训练神经网络,以生成具有各种细胞形态、较大动态寿命范围和复杂衰减成分的大量半合成 FLIM 数据。然后,我们开发了一个降级模型来获取 LR-HR 对,并创建了一个混合神经网络,即空间分辨率改进的 FLIM 网络 (SRI-FLIMnet),以同时估计荧光寿命并实现从 LR 到 HR 图像的非线性变换。评估结果表明,SRI-FLIMnet 在从有限像素分辨率重建空间信息方面表现出色。我们还使用感染细菌的 RAW 巨噬细胞的实验图像验证了 SRI-FLIMnet。结果表明,所提出的数据生成方法和 SRI-FLIMnet 可有效地实现 FLIM 应用的卓越空间分辨率。我们的研究为快速获取 HR FLIM 图像提供了一种解决方案。