Suppr超能文献

将循环神经网络与单光子雪崩二极管时间相关单光子计数(SPAD TCSPC)系统相结合用于实时荧光寿命成像。

Coupling a recurrent neural network to SPAD TCSPC systems for real-time fluorescence lifetime imaging.

作者信息

Lin Yang, Mos Paul, Ardelean Andrei, Bruschini Claudio, Charbon Edoardo

机构信息

Advanced Quantum Architecture Laboratory, École polytechnique fédérale de Lausanne, Neuchâtel, 2002, Switzerland.

出版信息

Sci Rep. 2024 Feb 8;14(1):3286. doi: 10.1038/s41598-024-52966-9.

Abstract

Fluorescence lifetime imaging (FLI) has been receiving increased attention in recent years as a powerful diagnostic technique in biological and medical research. However, existing FLI systems often suffer from a tradeoff between processing speed, accuracy, and robustness. Inspired by the concept of Edge Artificial Intelligence (Edge AI), we propose a robust approach that enables fast FLI with no degradation of accuracy. This approach couples a recurrent neural network (RNN), which is trained to estimate the fluorescence lifetime directly from raw timestamps without building histograms, to SPAD TCSPC systems, thereby drastically reducing transfer data volumes and hardware resource utilization, and enabling real-time FLI acquisition. We train two variants of the RNN on a synthetic dataset and compare the results to those obtained using center-of-mass method (CMM) and least squares fitting (LS fitting). Results demonstrate that two RNN variants, gated recurrent unit (GRU) and long short-term memory (LSTM), are comparable to CMM and LS fitting in terms of accuracy, while outperforming them in the presence of background noise by a large margin. To explore the ultimate limits of the approach, we derive the Cramer-Rao lower bound of the measurement, showing that RNN yields lifetime estimations with near-optimal precision. To demonstrate real-time operation, we build a FLI microscope based on an existing SPAD TCSPC system comprising a 32[Formula: see text]32 SPAD sensor named Piccolo. Four quantized GRU cores, capable of processing up to 4 million photons per second, are deployed on the Xilinx Kintex-7 FPGA that controls the Piccolo. Powered by the GRU, the FLI setup can retrieve real-time fluorescence lifetime images at up to 10 frames per second. The proposed FLI system is promising and ideally suited for biomedical applications, including biological imaging, biomedical diagnostics, and fluorescence-assisted surgery, etc.

摘要

近年来,荧光寿命成像(FLI)作为生物和医学研究中的一种强大诊断技术,受到了越来越多的关注。然而,现有的FLI系统往往在处理速度、准确性和鲁棒性之间存在权衡。受边缘人工智能(Edge AI)概念的启发,我们提出了一种稳健的方法,该方法能够实现快速FLI且不降低准确性。这种方法将一个循环神经网络(RNN)与单光子雪崩二极管时间相关单光子计数(SPAD TCSPC)系统相结合,该RNN经过训练可直接从原始时间戳估计荧光寿命,而无需构建直方图,从而大幅减少传输数据量和硬件资源利用率,并实现实时FLI采集。我们在一个合成数据集上训练了RNN的两个变体,并将结果与使用质心方法(CMM)和最小二乘法拟合(LS拟合)获得的结果进行比较。结果表明,两个RNN变体,即门控循环单元(GRU)和长短期记忆(LSTM),在准确性方面与CMM和LS拟合相当,而在存在背景噪声的情况下,它们的性能则远远优于CMM和LS拟合。为了探索该方法的极限,我们推导了测量的克拉美罗下界,表明RNN产生的寿命估计具有接近最优的精度。为了演示实时操作,我们基于一个现有的SPAD TCSPC系统构建了一台FLI显微镜,该系统包括一个名为Piccolo的32×32 SPAD传感器。四个量化的GRU内核,每秒能够处理多达400万个光子,被部署在控制Piccolo的赛灵思Kintex-7 FPGA上。由GRU驱动,FLI装置能够以每秒高达10帧的速度检索实时荧光寿命图像。所提出的FLI系统前景广阔,非常适合生物医学应用,包括生物成像、生物医学诊断和荧光辅助手术等。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adc3/10853568/13c46f829302/41598_2024_52966_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验