Suppr超能文献

基于深度学习的高速、大视野和高分辨率多光子成像

Deep learning-based high-speed, large-field, and high-resolution multiphoton imaging.

作者信息

Zhao Zewei, Shen Binglin, Li Yanping, Wang Shiqi, Hu Rui, Qu Junle, Lu Yuan, Liu Liwei

机构信息

Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.

Department of Dermatology, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, and Hua Zhong University of Science and Technology Union Shenzhen Hospital, China.

出版信息

Biomed Opt Express. 2022 Dec 7;14(1):65-80. doi: 10.1364/BOE.476737. eCollection 2023 Jan 1.

Abstract

Multiphoton microscopy is a formidable tool for the pathological analysis of tumors. The physical limitations of imaging systems and the low efficiencies inherent in nonlinear processes have prevented the simultaneous achievement of high imaging speed and high resolution. We demonstrate a self-alignment dual-attention-guided residual-in-residual generative adversarial network trained with various multiphoton images. The network enhances image contrast and spatial resolution, suppresses noise, and scanning fringe artifacts, and eliminates the mutual exclusion between field of view, image quality, and imaging speed. The network may be integrated into commercial microscopes for large-scale, high-resolution, and low photobleaching studies of tumor environments.

摘要

多光子显微镜是肿瘤病理分析的强大工具。成像系统的物理限制以及非线性过程固有的低效率阻碍了高成像速度和高分辨率的同时实现。我们展示了一种通过各种多光子图像训练的自对准双注意力引导的残差内残差生成对抗网络。该网络增强了图像对比度和空间分辨率,抑制了噪声和扫描条纹伪像,并消除了视野、图像质量和成像速度之间的相互排斥。该网络可集成到商业显微镜中,用于肿瘤环境的大规模、高分辨率和低光漂白研究。

相似文献

1
Deep learning-based high-speed, large-field, and high-resolution multiphoton imaging.
Biomed Opt Express. 2022 Dec 7;14(1):65-80. doi: 10.1364/BOE.476737. eCollection 2023 Jan 1.
2
Deep learning autofluorescence-harmonic microscopy.
Light Sci Appl. 2022 Mar 29;11(1):76. doi: 10.1038/s41377-022-00768-x.
3
High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network.
Biomed Opt Express. 2019 Feb 4;10(3):1044-1063. doi: 10.1364/BOE.10.001044. eCollection 2019 Mar 1.
4
Deep-3D microscope: 3D volumetric microscopy of thick scattering samples using a wide-field microscope and machine learning.
Biomed Opt Express. 2021 Dec 10;13(1):284-299. doi: 10.1364/BOE.444488. eCollection 2022 Jan 1.
5
Incorporation of residual attention modules into two neural networks for low-dose CT denoising.
Med Phys. 2021 Jun;48(6):2973-2990. doi: 10.1002/mp.14856. Epub 2021 Apr 23.
6
3D high resolution generative deep-learning network for fluorescence microscopy imaging.
Opt Lett. 2020 Apr 1;45(7):1695-1698. doi: 10.1364/OL.387486.
7
Unsupervised arterial spin labeling image superresolution via multiscale generative adversarial network.
Med Phys. 2022 Apr;49(4):2373-2385. doi: 10.1002/mp.15468. Epub 2022 Mar 7.
8
A Generative Adversarial Network technique for high-quality super-resolution reconstruction of cardiac magnetic resonance images.
Magn Reson Imaging. 2022 Jan;85:153-160. doi: 10.1016/j.mri.2021.10.033. Epub 2021 Oct 24.
10
A Large Field-of-view, Single-cell-resolution Two- and Three-Photon Microscope for Deep Imaging.
bioRxiv. 2024 Apr 13:2023.11.14.566970. doi: 10.1101/2023.11.14.566970.

引用本文的文献

1
Towards next-generation diagnostic pathology: AI-empowered label-free multiphoton microscopy.
Light Sci Appl. 2024 Sep 14;13(1):254. doi: 10.1038/s41377-024-01597-w.
2
Unveiling precision: a data-driven approach to enhance photoacoustic imaging with sparse data.
Biomed Opt Express. 2023 Dec 4;15(1):28-43. doi: 10.1364/BOE.506334. eCollection 2024 Jan 1.

本文引用的文献

2
Spatial resolution improved fluorescence lifetime imaging via deep learning.
Opt Express. 2022 Mar 28;30(7):11479-11494. doi: 10.1364/OE.451215.
3
Evaluation of resonant scanning as a high-speed imaging technique for two-photon imaging of cortical vasculature.
Biomed Opt Express. 2022 Feb 9;13(3):1374-1385. doi: 10.1364/BOE.448473. eCollection 2022 Mar 1.
4
Deep learning autofluorescence-harmonic microscopy.
Light Sci Appl. 2022 Mar 29;11(1):76. doi: 10.1038/s41377-022-00768-x.
6
Deep learning provides high accuracy in automated chondrocyte viability assessment in articular cartilage using nonlinear optical microscopy.
Biomed Opt Express. 2021 Apr 16;12(5):2759-2772. doi: 10.1364/BOE.417478. eCollection 2021 May 1.
7
Fast denoising and lossless spectrum extraction in stimulated Raman scattering microscopy.
J Biophotonics. 2021 Aug;14(8):e202100080. doi: 10.1002/jbio.202100080. Epub 2021 May 24.
8
Label-Free Deep Profiling of the Tumor Microenvironment.
Cancer Res. 2021 May 1;81(9):2534-2544. doi: 10.1158/0008-5472.CAN-20-3124. Epub 2021 Mar 19.
9
Characterizing and correcting camera noise in back-illuminated sCMOS cameras.
Opt Express. 2021 Mar 1;29(5):6668-6690. doi: 10.1364/OE.418684.
10
Monitoring the extracellular matrix remodeling of high-grade serous ovarian cancer with nonlinear optical microscopy.
J Biophotonics. 2021 Jun;14(6):e202000498. doi: 10.1002/jbio.202000498. Epub 2021 Mar 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验