Suppr超能文献

基于患者相似性网络和 DenseGCN 的新型肝癌诊断方法。

A novel liver cancer diagnosis method based on patient similarity network and DenseGCN.

机构信息

School of Computer and Information Engineering, Henan University, Kaifeng, China.

Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China.

出版信息

Sci Rep. 2022 Apr 26;12(1):6797. doi: 10.1038/s41598-022-10441-3.

Abstract

Liver cancer is the main malignancy in terms of mortality rate, accurate diagnosis can help the treatment outcome of liver cancer. Patient similarity network is an important information which helps in cancer diagnosis. However, recent works rarely take patient similarity into consideration. To address this issue, we constructed patient similarity network using three liver cancer omics data, and proposed a novel liver cancer diagnosis method consisted of similarity network fusion, denoising autoencoder and dense graph convolutional neural network to capitalize on patient similarity network and multi omics data. We compared our proposed method with other state-of-the-art methods and machine learning methods on TCGA-LIHC dataset to evaluate its performance. The results confirmed that our proposed method surpasses these comparison methods in terms of all the metrics. Especially, our proposed method has attained an accuracy up to 0.9857.

摘要

肝癌是死亡率方面的主要恶性肿瘤,准确的诊断有助于肝癌的治疗效果。患者相似性网络是有助于癌症诊断的重要信息。然而,最近的研究工作很少考虑患者相似性。为了解决这个问题,我们使用三种肝癌组学数据构建了患者相似性网络,并提出了一种新的肝癌诊断方法,该方法由相似性网络融合、去噪自编码器和密集图卷积神经网络组成,以利用患者相似性网络和多组学数据。我们在 TCGA-LIHC 数据集上比较了我们提出的方法与其他最先进的方法和机器学习方法的性能。结果证实,我们提出的方法在所有指标上都优于这些比较方法。特别是,我们提出的方法的准确率高达 0.9857。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验