Suppr超能文献

一种用于帕金森病纵向分层的综合网络方法。

An integrative network approach for longitudinal stratification in Parkinson's disease.

作者信息

Ryan Barry, Marioni Riccardo, Simpson T Ian

机构信息

School of Informatics, The University of Edinburgh, Edinburgh, United Kingdom.

Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, United Kingdom.

出版信息

PLoS Comput Biol. 2025 Mar 28;21(3):e1012857. doi: 10.1371/journal.pcbi.1012857. eCollection 2025.

Abstract

Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor symptoms resulting from the loss of dopamine-producing neurons in the brain. Currently, there is no cure for the disease which is in part due to the heterogeneity in patient symptoms, trajectories and manifestations. There is a known genetic component of PD and genomic datasets have helped to uncover some aspects of the disease. Understanding the longitudinal variability of PD is essential as it has been theorised that there are different triggers and underlying disease mechanisms at different points during disease progression. In this paper, we perform longitudinal and cross-sectional experiments to identify which data modalities or combinations of modalities are informative at different time points. We use clinical, genomic, and proteomic data from the Parkinson's Progression Markers Initiative. We validate the importance of flexible data integration by highlighting the varying combinations of data modalities for optimal stratification at different disease stages in idiopathic PD. We show there is a shared signal in the DNAm signatures of participants with a mutation in a causal gene of PD and participants with idiopathic PD. We also show that integration of SNPs and DNAm data modalities has potential for use as an early diagnostic tool for individuals with a genetic cause of PD.

摘要

帕金森病(PD)是一种神经退行性疾病,其特征是大脑中产生多巴胺的神经元丧失导致运动症状。目前,该疾病无法治愈,部分原因是患者症状、病程和表现存在异质性。PD存在已知的遗传因素,基因组数据集有助于揭示该疾病的一些方面。了解PD的纵向变异性至关重要,因为据推测,在疾病进展的不同阶段存在不同的触发因素和潜在疾病机制。在本文中,我们进行纵向和横断面实验,以确定哪些数据模式或模式组合在不同时间点具有信息价值。我们使用来自帕金森病进展标志物计划的临床、基因组和蛋白质组数据。通过强调不同疾病阶段特发性PD中用于最佳分层的数据模式的不同组合,我们验证了灵活数据整合的重要性。我们表明,患有PD因果基因突变的参与者和特发性PD参与者的DNA甲基化特征中存在共同信号。我们还表明,单核苷酸多态性(SNP)和DNA甲基化数据模式的整合有潜力用作具有PD遗传病因个体的早期诊断工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cab/11957384/3101ee3eac72/pcbi.1012857.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验