Ma Zelin, Ge Jun, Chen Wanjun, Cao Xucheng, Diao Shanqing, Liu Zhiyu, Pan Shusheng
Research Center for Advanced Information Materials (CAIM), Huangpu Research & Graduate School of Guangzhou University, Guangzhou 510555, China.
Solid State Physics & Material Research Laboratory, School of Physics and Material Science, Guangzhou University, Guangzhou 510006, China.
ACS Appl Mater Interfaces. 2022 May 11;14(18):21207-21216. doi: 10.1021/acsami.2c03266. Epub 2022 Apr 27.
Memristors based on two-dimensional (2D) materials can exhibit great scalability and ultralow power consumption, yet the structural and thickness inhomogeneity of ultrathin electrolytes lowers the production yield and reliability of devices. Here, we report that the self-limiting amorphous SiO (∼2.7 nm) provides a perfect atomically thin electrolyte with high uniformity, featuring a record high production yield. With the guidance of physical modeling, we reveal that the atomic thickness of SiO enables anomalous resistive switching with a transition to an analog quasi-reset mode, where the filament stability can be further enhanced using Ag-Au nanocomposite electrodes. Such a picojoule memristor shows record low switching variabilities (C2C and D2D variation down to 1.1 and 2.6%, respectively), good retention at a few microsiemens, and high conductance-updating linearity, constituting key metrics for analog neural networks. In addition, the stable high-resistance state is found to be an excellent source for true random numbers of Gaussian distribution. This work opens up opportunities in mass production of Si-compatible memristors for ultradense neuromorphic and security hardware.
基于二维(2D)材料的忆阻器可展现出出色的可扩展性和超低功耗,然而超薄电解质的结构和厚度不均匀性会降低器件的产量和可靠性。在此,我们报道自限性非晶态SiO(约2.7纳米)可提供具有高度均匀性的完美原子级薄电解质,其产量创历史新高。在物理建模的指导下,我们揭示SiO的原子厚度可实现异常电阻开关,并转变为模拟准复位模式,在此模式下,使用Ag-Au纳米复合电极可进一步增强细丝稳定性。这种皮焦耳忆阻器展现出创纪录的低开关变化率(C2C和D2D变化率分别低至1.1%和2.6%)、在几微西门子下具有良好的保持性以及高电导更新线性度,这些构成了模拟神经网络的关键指标。此外,稳定的高电阻状态被发现是产生高斯分布真随机数的绝佳来源。这项工作为大规模生产用于超密集神经形态和安全硬件的硅兼容忆阻器带来了机遇。