Suppr超能文献

外光-暗周期通过内在光敏性视网膜神经节细胞塑造肠道微生物群。

External light-dark cycle shapes gut microbiota through intrinsically photosensitive retinal ganglion cells.

机构信息

Department of Life Science, National Taiwan University, Taipei, Taiwan.

Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan.

出版信息

EMBO Rep. 2022 Jun 7;23(6):e52316. doi: 10.15252/embr.202052316. Epub 2022 Apr 27.

Abstract

Gut microbiota are involved in many physiological functions such as metabolism, brain development, and neurodegenerative diseases. Many microbes in the digestive tract do not maintain a constant level of their relative abundance but show daily oscillations under normal conditions. Recent evidence indicates that chronic jetlag, constant darkness, or deletion of the circadian core gene can alter the composition of gut microbiota and dampen the daily oscillation of gut microbes. However, the neuronal circuit responsible for modulating gut microbiota remained unclear. Using genetic mouse models and 16s rRNA metagenomic analysis, we find that light-dark cycle information transmitted by the intrinsically photosensitive retinal ganglion cells (ipRGCs) is essential for daily oscillations of gut microbes under temporal restricted high-fat diet conditions. Furthermore, aberrant light exposure such as dim light at night (dLAN) can alter the composition, relative abundance, and daily oscillations of gut microbiota. Together, our results indicate that external light-dark cycle information can modulate gut microbiota in the direction from the brain to the gut via the sensory system.

摘要

肠道微生物群参与许多生理功能,如代谢、大脑发育和神经退行性疾病。消化道中的许多微生物并没有保持其相对丰度的恒定水平,而是在正常条件下表现出每日波动。最近的证据表明,慢性时差、持续黑暗或昼夜节律核心基因缺失会改变肠道微生物群的组成,并抑制肠道微生物的日常波动。然而,调节肠道微生物群的神经元回路尚不清楚。使用遗传小鼠模型和 16s rRNA 宏基因组分析,我们发现,由内在光敏性视网膜神经节细胞(ipRGCs)传递的光-暗循环信息对于时间限制的高脂肪饮食条件下肠道微生物的日常波动是必需的。此外,异常的光照,如夜间昏暗灯光(dLAN),可以改变肠道微生物的组成、相对丰度和日常波动。总之,我们的研究结果表明,外部光-暗循环信息可以通过感觉系统从大脑向肠道调节肠道微生物群。

相似文献

1
External light-dark cycle shapes gut microbiota through intrinsically photosensitive retinal ganglion cells.
EMBO Rep. 2022 Jun 7;23(6):e52316. doi: 10.15252/embr.202052316. Epub 2022 Apr 27.
3
Intrinsically Photosensitive Retinal Ganglion Cells (ipRGCs) Are Necessary for Light Entrainment of Peripheral Clocks.
PLoS One. 2016 Dec 16;11(12):e0168651. doi: 10.1371/journal.pone.0168651. eCollection 2016.
4
Mood, the Circadian System, and Melanopsin Retinal Ganglion Cells.
Annu Rev Neurosci. 2017 Jul 25;40:539-556. doi: 10.1146/annurev-neuro-072116-031324. Epub 2017 May 17.
5
Circadian modulation of melanopsin-driven light response in rat ganglion-cell photoreceptors.
J Biol Rhythms. 2009 Oct;24(5):391-402. doi: 10.1177/0748730409343767.
6
Melanopsin--shedding light on the elusive circadian photopigment.
Chronobiol Int. 2004 Mar;21(2):189-204. doi: 10.1081/cbi-120037816.
7
C-terminal phosphorylation regulates the kinetics of a subset of melanopsin-mediated behaviors in mice.
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2741-2746. doi: 10.1073/pnas.1611893114. Epub 2017 Feb 21.
9
Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision.
Nature. 2008 May 1;453(7191):102-5. doi: 10.1038/nature06829. Epub 2008 Apr 23.
10
Intrinsic photosensitive retinal ganglion cells in the diurnal rodent, Arvicanthis ansorgei.
PLoS One. 2013 Aug 9;8(8):e73343. doi: 10.1371/journal.pone.0073343. eCollection 2013.

引用本文的文献

1
Impact of Light Spectrum on Tadpole Physiology and Gut Microbiota in the Dybowski's Frog ().
Animals (Basel). 2025 Jul 13;15(14):2066. doi: 10.3390/ani15142066.
2
Circadian metabolic adaptations to infections.
Philos Trans R Soc Lond B Biol Sci. 2025 Jan 23;380(1918):20230473. doi: 10.1098/rstb.2023.0473.
3
Light-eye-body axis: exploring the network from retinal illumination to systemic regulation.
Theranostics. 2025 Jan 2;15(4):1496-1523. doi: 10.7150/thno.106589. eCollection 2025.
5
Gut microbiota and epigenetic choreography: Implications for human health: A review.
Medicine (Baltimore). 2024 Jul 19;103(29):e39051. doi: 10.1097/MD.0000000000039051.
6
Association between mobile phone addiction, sleep disorder and the gut microbiota: a short-term prospective observational study.
Front Microbiol. 2023 Dec 19;14:1323116. doi: 10.3389/fmicb.2023.1323116. eCollection 2023.

本文引用的文献

1
Arrhythmic Gut Microbiome Signatures Predict Risk of Type 2 Diabetes.
Cell Host Microbe. 2020 Aug 12;28(2):258-272.e6. doi: 10.1016/j.chom.2020.06.004. Epub 2020 Jul 2.
2
Retinal innervation tunes circuits that drive nonphotic entrainment to food.
Nature. 2020 May;581(7807):194-198. doi: 10.1038/s41586-020-2204-1. Epub 2020 Apr 22.
3
A noncanonical inhibitory circuit dampens behavioral sensitivity to light.
Science. 2020 May 1;368(6490):527-531. doi: 10.1126/science.aay3152.
5
The intestinal microbiota programs diurnal rhythms in host metabolism through histone deacetylase 3.
Science. 2019 Sep 27;365(6460):1428-1434. doi: 10.1126/science.aaw3134.
6
Light-entrained and brain-tuned circadian circuits regulate ILC3s and gut homeostasis.
Nature. 2019 Oct;574(7777):254-258. doi: 10.1038/s41586-019-1579-3. Epub 2019 Sep 18.
9
Alterations of the Gut Microbiota Associated With Promoting Efficacy of Prednisone by Bromofuranone in MRL/lpr Mice.
Front Microbiol. 2019 May 1;10:978. doi: 10.3389/fmicb.2019.00978. eCollection 2019.
10
Circulating levels of the anti-oxidant indoleproprionic acid are associated with higher gut microbiome diversity.
Gut Microbes. 2019;10(6):688-695. doi: 10.1080/19490976.2019.1586038. Epub 2019 Apr 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验