Suppr超能文献

利用基因敲除纤毛的多能干细胞衍生的人类组织对纤毛病表型进行建模。

Modelling ciliopathy phenotypes in human tissues derived from pluripotent stem cells with genetically ablated cilia.

机构信息

Division of Nephrology, University of Washington School of Medicine, Seattle, WA, USA.

Kidney Research Institute, Seattle, WA, USA.

出版信息

Nat Biomed Eng. 2022 Apr;6(4):463-475. doi: 10.1038/s41551-022-00880-8. Epub 2022 Apr 27.

Abstract

The functions of cilia-antenna-like organelles associated with a spectrum of disease states-are poorly understood, particularly in human cells. Here we show that human pluripotent stem cells (hPSCs) edited via CRISPR to knock out the kinesin-2 subunits KIF3A or KIF3B can be used to model ciliopathy phenotypes and to reveal ciliary functions at the tissue scale. KIF3A and KIF3B hPSCs lacked cilia, yet remained robustly self-renewing and pluripotent. Tissues and organoids derived from these hPSCs displayed phenotypes that recapitulated defective neurogenesis and nephrogenesis, polycystic kidney disease (PKD) and other features of the ciliopathy spectrum. We also show that human cilia mediate a critical switch in hedgehog signalling during organoid differentiation, and that they constitutively release extracellular vesicles containing signalling molecules associated with ciliopathy phenotypes. The capacity of KIF3A and KIF3B hPSCs to reveal endogenous mechanisms underlying complex ciliary phenotypes may facilitate the discovery of candidate therapeutics.

摘要

与一系列疾病状态相关的纤毛-触角样细胞器的功能尚未被充分了解,尤其是在人类细胞中。在这里,我们展示了通过 CRISPR 编辑敲除驱动蛋白-2 亚基 KIF3A 或 KIF3B 的人类多能干细胞 (hPSC) 可用于模拟纤毛病表型,并揭示组织尺度上的纤毛功能。KIF3A 和 KIF3B hPSC 缺乏纤毛,但仍保持强大的自我更新和多能性。源自这些 hPSC 的组织和类器官表现出与神经发生和肾发生缺陷、多囊肾病 (PKD) 和纤毛病谱的其他特征相吻合的表型。我们还表明,人类纤毛在类器官分化过程中调节 Hedgehog 信号的关键开关,并且它们持续释放含有与纤毛病表型相关的信号分子的细胞外囊泡。KIF3A 和 KIF3B hPSC 揭示复杂纤毛病表型的内在机制的能力可能有助于发现候选治疗药物。

相似文献

1
Modelling ciliopathy phenotypes in human tissues derived from pluripotent stem cells with genetically ablated cilia.
Nat Biomed Eng. 2022 Apr;6(4):463-475. doi: 10.1038/s41551-022-00880-8. Epub 2022 Apr 27.
2
Mutations in the Kinesin-2 Motor KIF3B Cause an Autosomal-Dominant Ciliopathy.
Am J Hum Genet. 2020 Jun 4;106(6):893-904. doi: 10.1016/j.ajhg.2020.04.005. Epub 2020 May 7.
4
5
Acute Inhibition of Heterotrimeric Kinesin-2 Function Reveals Mechanisms of Intraflagellar Transport in Mammalian Cilia.
Curr Biol. 2019 Apr 1;29(7):1137-1148.e4. doi: 10.1016/j.cub.2019.02.043. Epub 2019 Mar 21.
7
Kinesin-2 family in vertebrate ciliogenesis.
Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2388-93. doi: 10.1073/pnas.1116035109. Epub 2012 Jan 30.
8
9
Molecular genetics of renal ciliopathies.
Biochem Soc Trans. 2021 Jun 30;49(3):1205-1220. doi: 10.1042/BST20200791.

引用本文的文献

1
Imaging 3D cell cultures with optical microscopy.
Nat Methods. 2025 Apr 17. doi: 10.1038/s41592-025-02647-w.
3
Physiologic mechanisms underlying polycystic kidney disease.
Physiol Rev. 2025 Jul 1;105(3):1553-1607. doi: 10.1152/physrev.00018.2024. Epub 2025 Feb 12.
5
Postnatal renal tubule development: roles of tubular flow and flux.
Curr Opin Nephrol Hypertens. 2024 Sep 1;33(5):518-525. doi: 10.1097/MNH.0000000000001007. Epub 2024 Jun 24.
6
Involvement of kinesins in skeletal dysplasia: a review.
Am J Physiol Cell Physiol. 2024 Aug 1;327(2):C278-C290. doi: 10.1152/ajpcell.00613.2023. Epub 2024 Apr 22.
7
XIAP-mediated degradation of IFT88 disrupts HSC cilia to stimulate HSC activation and liver fibrosis.
EMBO Rep. 2024 Mar;25(3):1055-1074. doi: 10.1038/s44319-024-00092-y. Epub 2024 Feb 13.
8
HIF-1α promotes kidney organoid vascularization and applications in disease modeling.
Stem Cell Res Ther. 2023 Nov 19;14(1):336. doi: 10.1186/s13287-023-03528-9.
9
Navigating the kidney organoid: insights into assessment and enhancement of nephron function.
Am J Physiol Renal Physiol. 2023 Dec 1;325(6):F695-F706. doi: 10.1152/ajprenal.00166.2023. Epub 2023 Sep 28.

本文引用的文献

1
Mutations in the Kinesin-2 Motor KIF3B Cause an Autosomal-Dominant Ciliopathy.
Am J Hum Genet. 2020 Jun 4;106(6):893-904. doi: 10.1016/j.ajhg.2020.04.005. Epub 2020 May 7.
4
Lineage-specific roles of hedgehog-GLI signaling during mammalian kidney development.
Pediatr Nephrol. 2020 May;35(5):725-731. doi: 10.1007/s00467-019-04240-8. Epub 2019 Mar 28.
5
Comparative Analysis and Refinement of Human PSC-Derived Kidney Organoid Differentiation with Single-Cell Transcriptomics.
Cell Stem Cell. 2018 Dec 6;23(6):869-881.e8. doi: 10.1016/j.stem.2018.10.010. Epub 2018 Nov 15.
6
Organoid cystogenesis reveals a critical role of microenvironment in human polycystic kidney disease.
Nat Mater. 2017 Nov;16(11):1112-1119. doi: 10.1038/nmat4994. Epub 2017 Oct 2.
7
Gene-Edited Human Kidney Organoids Reveal Mechanisms of Disease in Podocyte Development.
Stem Cells. 2017 Dec;35(12):2366-2378. doi: 10.1002/stem.2707. Epub 2017 Sep 29.
8
Dynamic Remodeling of Membrane Composition Drives Cell Cycle through Primary Cilia Excision.
Cell. 2017 Jan 12;168(1-2):264-279.e15. doi: 10.1016/j.cell.2016.12.032.
9
An Actin Network Dispatches Ciliary GPCRs into Extracellular Vesicles to Modulate Signaling.
Cell. 2017 Jan 12;168(1-2):252-263.e14. doi: 10.1016/j.cell.2016.11.036. Epub 2016 Dec 22.
10
Microtubule Motors Drive Hedgehog Signaling in Primary Cilia.
Trends Cell Biol. 2017 Feb;27(2):110-125. doi: 10.1016/j.tcb.2016.09.010. Epub 2016 Oct 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验