Laboratory for Topological Quantum Matter and Spectroscopy, Department of Physics, Princeton University, Princeton, NJ, USA.
RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama, Japan.
Nature. 2022 Apr;604(7907):647-652. doi: 10.1038/s41586-022-04512-8. Epub 2022 Apr 27.
Quantum phases can be classified by topological invariants, which take on discrete values capturing global information about the quantum state. Over the past decades, these invariants have come to play a central role in describing matter, providing the foundation for understanding superfluids, magnets, the quantum Hall effect, topological insulators, Weyl semimetals and other phenomena. Here we report an unusual linking-number (knot theory) invariant associated with loops of electronic band crossings in a mirror-symmetric ferromagnet. Using state-of-the-art spectroscopic methods, we directly observe three intertwined degeneracy loops in the material's three-torus, T, bulk Brillouin zone. We find that each loop links each other loop twice. Through systematic spectroscopic investigation of this linked-loop quantum state, we explicitly draw its link diagram and conclude, in analogy with knot theory, that it exhibits the linking number (2, 2, 2), providing a direct determination of the invariant structure from the experimental data. We further predict and observe, on the surface of our samples, Seifert boundary states protected by the bulk linked loops, suggestive of a remarkable Seifert bulk-boundary correspondence. Our observation of a quantum loop link motivates the application of knot theory to the exploration of magnetic and superconducting quantum matter.
量子相可以通过拓扑不变量来分类,这些不变量取离散的值,捕捉量子态的全局信息。在过去的几十年中,这些不变量在描述物质方面发挥了核心作用,为理解超流体、磁铁、量子霍尔效应、拓扑绝缘体、外尔半金属和其他现象提供了基础。在这里,我们报告了一种与镜面对称铁磁体中电子能带交叉环相关的不寻常的纽结数(纽结理论)不变量。我们使用最先进的光谱方法,直接观察到材料的三维体布里渊区 T 中的三个交织的简并环。我们发现每个环都与其他两个环连接两次。通过对这种连接环量子态的系统光谱研究,我们明确地绘制了它的链接图,并根据类比于纽结理论的结论,它表现出纽结数(2,2,2),从实验数据中直接确定不变量结构。我们进一步在样品表面预测并观察到由体连接环保护的 Seifert 边界态,暗示了一种显著的 Seifert 体边界对应关系。我们对量子环链接的观察促使人们将纽结理论应用于对磁性和超导量子物质的探索。