Suppr超能文献

对蓝细菌抗菌化合物进行体内和计算机模拟筛选。

In vivo and in silico screening for antimicrobial compounds from cyanobacteria.

作者信息

Strieth Dorina, Lenz Selina, Ulber Roland

机构信息

Chair of Bioprocess Engineering, University of Kaiserslautern, Kaiserslautern, Germany.

出版信息

Microbiologyopen. 2022 Apr;11(2):e1268. doi: 10.1002/mbo3.1268.

Abstract

Due to the emerging rise of multi-drug resistant bacteria, the discovery of novel antibiotics is of high scientific interest. Through their high chemodiversity of bioactive secondary metabolites, cyanobacteria have proven to be promising microorganisms for the discovery of antibacterial compounds. These aspects make appropriate antibacterial screening approaches for cyanobacteria crucial. Up to date, screenings are mostly carried out using a phenotypic methodology, consisting of cyanobacterial cultivation, extraction, and inhibitory assays. However, the parameters of these methods highly vary within the literature. Therefore, the common choices of parameters and inhibitory assays are summarized in this review. Nevertheless, less frequently used method variants are highlighted, which lead to hits from antimicrobial compounds. In addition to the considerations of phenotypic methods, this study provides an overview of developments in the genome-based screening area, be it in vivo using PCR technique or in silico using the recent genome-mining method. Though, up to date, these techniques are not applied as much as phenotypic screening.

摘要

由于多重耐药细菌的不断出现,新型抗生素的发现具有很高的科学价值。通过其生物活性次生代谢产物的高度化学多样性,蓝藻已被证明是发现抗菌化合物的有前景的微生物。这些方面使得针对蓝藻的合适抗菌筛选方法至关重要。到目前为止,筛选大多采用表型方法进行,包括蓝藻培养、提取和抑制试验。然而,这些方法的参数在文献中差异很大。因此,本综述总结了参数和抑制试验的常见选择。尽管如此,本文还突出了较少使用的方法变体,这些变体可导致从抗菌化合物中获得阳性结果。除了对表型方法的考虑之外,本研究还概述了基于基因组的筛选领域的进展,无论是使用PCR技术的体内筛选还是使用最近的基因组挖掘方法的计算机筛选。不过,到目前为止,这些技术的应用不如表型筛选广泛。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44d0/8924698/8b2eacaaa330/MBO3-11-e1268-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验