Suppr超能文献

调制掺杂实现了n型Bi₂Te₃Se中的超高功率因数和热电优值ZT 。

Modulation Doping Enables Ultrahigh Power Factor and Thermoelectric ZT in n-Type Bi Te Se.

作者信息

Chen Cheng-Lung, Wang Te-Hsien, Yu Zih-Gin, Hutabalian Yohanes, Vankayala Ranganayakulu K, Chen Chao-Chih, Hsieh Wen-Pin, Jeng Horng-Tay, Wei Da-Hua, Chen Yang-Yuan

机构信息

Institute of Physics, Academia Sinica, Taipei, Taiwan, 11529, ROC.

Department of Physics, National Chung Hsing University, Taichung, Taiwan, 40227, ROC.

出版信息

Adv Sci (Weinh). 2022 Jul;9(20):e2201353. doi: 10.1002/advs.202201353. Epub 2022 Apr 27.

Abstract

Bismuth telluride-based thermoelectric (TE) materials are historically recognized as the best p-type (ZT = 1.8) TE materials at room temperature. However, the poor performance of n-type (ZT≈1.0) counterparts seriously reduces the efficiency of the device. Such performance imbalance severely impedes its TE applications either in electrical generation or refrigeration. Here, a strategy to boost n-type Bi Te Se crystals up to ZT = 1.42 near room temperature by a two-stage process is reported, that is, step 1: stabilizing Seebeck coefficient by CuI doping; step 2: boosting power factor (PF) by synergistically optimizing phonon and carrier transport via thermal-driven Cu intercalation in the van der Waals (vdW) gaps. Theoretical ab initio calculations disclose that these intercalated Cu atoms act as modulation doping and contribute conduction electrons of wavefunction spatially separated from the Cu atoms themselves, which simultaneously lead to large carrier concentration and high mobility. As a result, an ultra-high PF ≈63.5 µW cm K at 300 K and a highest average ZT = 1.36 at 300-450 K are realized, which outperform all n-type bismuth telluride materials ever reported. The work offers a new approach to improving n-type layered TE materials.

摘要

碲化铋基热电(TE)材料在历史上被公认为室温下最佳的p型(ZT = 1.8)TE材料。然而,n型(ZT≈1.0)对应材料的性能较差,严重降低了器件的效率。这种性能失衡严重阻碍了其在发电或制冷方面的TE应用。在此,报道了一种通过两步法将n型Bi₂Te₃Se晶体在室温附近的ZT提高到1.42的策略,即步骤1:通过CuI掺杂稳定塞贝克系数;步骤2:通过热驱动的Cu在范德华(vdW)间隙中插层协同优化声子和载流子传输来提高功率因子(PF)。理论从头算计算表明,这些插层的Cu原子起到调制掺杂的作用,并贡献与Cu原子本身空间分离的波函数的传导电子,这同时导致了大的载流子浓度和高迁移率。结果,在300 K时实现了超高的PF≈63.5 μW cm⁻¹ K⁻²,在300 - 450 K时实现了最高平均ZT = 1.36,优于以往报道的所有n型碲化铋材料。这项工作为改进n型层状TE材料提供了一种新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b14/9284191/ea2ec275d5d0/ADVS-9-2201353-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验