Suppr超能文献

通过晶格取向管理增强BiSbTe薄膜中的ZT值

Enhancement of ZT in BiSbTe Thin Film through Lattice Orientation Management.

作者信息

Tsai Wei-Han, Chen Cheng-Lung, Vankayala Ranganayakulu K, Lo Ying-Hsiang, Hsieh Wen-Pin, Wang Te-Hsien, Huang Ssu-Yen, Chen Yang-Yuan

机构信息

Department of Physics, National Taiwan University, Taipei 10617, Taiwan.

Institute of Physics, Academia Sinica, Taipei 115, Taiwan.

出版信息

Nanomaterials (Basel). 2024 Apr 25;14(9):747. doi: 10.3390/nano14090747.

Abstract

Thermoelectric power can convert heat and electricity directly and reversibly. Low-dimensional thermoelectric materials, particularly thin films, have been considered a breakthrough for separating electronic and thermal transport relationships. In this study, a series of BiSbTe thin films with thicknesses of 0.125, 0.25, 0.5, and 1 μm have been fabricated by RF sputtering for the study of thickness effects on thermoelectric properties. We demonstrated that microstructure (texture) changes highly correlate with the growth thickness in the films, and equilibrium annealing significantly improves the thermoelectric performance, resulting in a remarkable enhancement in the thermoelectric performance. Consequently, the 0.5 μm thin films achieve an exceptional power factor of 18.1 μWcmK at 400 K. Furthermore, we utilize a novel method that involves exfoliating a nanosized film and cutting with a focused ion beam, enabling precise in-plane thermal conductivity measurements through the 3ω method. We obtain the in-plane thermal conductivity as low as 0.3 WmK, leading to a maximum ZT of 1.86, nearing room temperature. Our results provide significant insights into advanced thin-film thermoelectric design and fabrication, boosting high-performance systems.

摘要

热电功率可以直接且可逆地转换热和电。低维热电材料,特别是薄膜,被认为是分离电子和热传输关系的一个突破。在本研究中,通过射频溅射制备了一系列厚度分别为0.125、0.25、0.5和1μm的BiSbTe薄膜,以研究厚度对热电性能的影响。我们证明了微观结构(织构)变化与薄膜中的生长厚度高度相关,并且平衡退火显著改善了热电性能,从而使热电性能得到显著增强。因此,0.5μm厚的薄膜在400K时实现了高达18.1μWcmK的优异功率因子。此外,我们采用了一种新颖的方法,即剥离纳米尺寸的薄膜并用聚焦离子束切割,从而能够通过3ω方法精确测量面内热导率。我们获得了低至0.3WmK的面内热导率,导致最大ZT值达到1.86,接近室温。我们的结果为先进薄膜热电设计和制造提供了重要见解,推动了高性能系统的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6de8/11085152/2022ea321047/nanomaterials-14-00747-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验