Suppr超能文献

全髋关节置换术后6个月股骨颈骨折患者预后的预测模型

Prediction Models for Prognosis of Femoral Neck-Fracture Patients 6 Months after Total Hip Arthroplasty.

作者信息

Zheng Xiaofeng, Xiao Cong, Xie Zhuocheng, Liu Lijuan, Chen Yinhua

机构信息

Department of Orthopedics, Third Hospital of Mianyang Sichuan Mental Health Center, Mianyang, Sichuan, 621000, People's Republic of China.

Department of Orthopedics, Sichuan Science City Hospital, Mianyang, Sichuan, 621000, People's Republic of China.

出版信息

Int J Gen Med. 2022 Apr 21;15:4339-4356. doi: 10.2147/IJGM.S347425. eCollection 2022.

Abstract

PURPOSE

To establish prediction models for 6-month prognosis in femoral neck-fracture patients receiving total hip arthroplasty (THA).

PATIENTS AND METHODS

In total, 182 computed tomography image pairs from 85 patients were collected and divided into a training set (n=127) and testing set (n=55). Least absolute shrinkage-selection operator regression was used for selecting optimal predictors. A random-forest algorithm was used to establish the prediction models, which were evaluated for accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under the curve (AUC).

RESULTS

The best model in this study was constructed based on demographic data, preoperative laboratory indicators, and three preoperative radiomic features. In the random-forest model, activated partial thromboplastin time, a preoperative radiomic feature (maximum diameter), and fibrinogen were important variables correlating with patient outcomes. The AUC, sensitivity, specificity, PPV, NPV, and accuracy in the training set were 0.986 (95% CI 0.971-1), 0.925 (95% CI 0.862-0.988), 0.983 (95% CI 0.951-1.016), 0.984 (95% CI 0.953-1.014), 0.922 (95% CI 0.856-0.988), and 0.953 (95% CI 0.916-0.990), respectively. The AUC, sensitivity, specificity, PPV, NPV, and accuracy in the testing set were 0.949 (95% CI 0.885-1), 0.767 (95% CI 0.615-0.918), 1 (95% CI 1-1), 1 (95% CI 1-1), 0.781 (95% CI 0.638-0.924), and 0.873 (95% CI 0.785-0.961), respectively.

CONCLUSION

The model based on demographic, preoperative clinical, and preoperative radiomic data showed the best predictive ability for 6-month prognosis in the femoral neck-fracture patients receiving THA.

摘要

目的

建立接受全髋关节置换术(THA)的股骨颈骨折患者6个月预后的预测模型。

患者与方法

共收集了85例患者的182对计算机断层扫描图像,并分为训练集(n = 127)和测试集(n = 55)。采用最小绝对收缩选择算子回归来选择最佳预测指标。使用随机森林算法建立预测模型,并对其准确性、敏感性、特异性、阳性预测值(PPV)、阴性预测值(NPV)和曲线下面积(AUC)进行评估。

结果

本研究中的最佳模型是基于人口统计学数据、术前实验室指标和三个术前影像组学特征构建的。在随机森林模型中,活化部分凝血活酶时间、一个术前影像组学特征(最大直径)和纤维蛋白原是与患者预后相关的重要变量。训练集的AUC、敏感性、特异性、PPV、NPV和准确性分别为0.986(95%CI 0.971 - 1)、0.925(95%CI 0.862 - 0.988)、0.983(95%CI 0.951 - 1.016)、0.984(95%CI 0.953 - 1.014)、0.922(95%CI 0.856 - 0.988)和0.953(95%CI 0.916 - 0.990)。测试集的AUC、敏感性、特异性、PPV、NPV和准确性分别为0.949(95%CI 0.885 - 1)、0.767(95%CI 0.615 - 0.918)、1(95%CI 1 - 1)、1(95%CI 1 - 1)、0.781(95%CI 0.638 - 0.924)和0.873(95%CI 0.785 - 0.961)。

结论

基于人口统计学、术前临床和术前影像组学数据的模型对接受THA的股骨颈骨折患者6个月预后显示出最佳预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbed/9037899/266f5287e45a/IJGM-15-4339-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验