State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China.
iNANO and Department of Physics and Astronomy, Aarhus University, Aarhus, 8000, Denmark.
Adv Healthc Mater. 2022 Jul;11(14):e2200041. doi: 10.1002/adhm.202200041. Epub 2022 May 4.
As a typical tumor microenvironment-responsive therapy, chemodynamic therapy (CDT), producing hydroxyl radicals ( OH) to eliminate tumor cells, has demonstrated great promise. Nevertheless, there are still major challenges: OH generated from endogenous H O is usually insufficient; the CDT effect is strongly dependent on the pre-reaction with glutathione. Addressing the challenges, Au@MnSe core-shell nanoagent for synergetic chemodynamic-photothermo-photocatalytic therapy combined with tetramodal imaging, including magnetic resonance imaging, computed tomography, photoacoustic, and infrared thermal imaging is reported. Distinct from the reported glutathione-depleting agents, Mn in MnSe allows immediate generation of OH, independent of pre-reaction. Meanwhile, Mn consumes glutathione by its conversion to Mn . The Au-MnSe combination promotes photothermal conversion and photocatalytic reaction, resulting in largely enhanced OH generation from endogenous H O and significant hyperthermia. Meanwhile, immune response is effectively activated: the intratumoral expression of programmed cell death-1 and proinflammatory cytokines increase to 4-7 folds; the cytotoxic and helper T lymphocytes cells in the tumor area increase to more than 2.5-folds; an evident, temporary systemic immunostimulatory effect is demonstrated. High tumor inhibition rate (≈97.3%) and greatly prolonged survival are obtained. This highly-integrated design coordinating three different therapies with four different imaging modals provide new possibilities for high-performance theranostic nanoagents.
作为一种典型的肿瘤微环境响应治疗方法,化学动力学治疗(CDT)通过产生羟基自由基(OH)来消除肿瘤细胞,具有很大的应用前景。然而,仍存在一些重大挑战:内源性 H2O2 产生的 OH 通常不足;CDT 效应强烈依赖于与谷胱甘肽的预反应。为了解决这些挑战,报道了一种用于协同化学动力学-光热-光催化治疗的 Au@MnSe 核壳纳米制剂,同时结合了四种模态成像,包括磁共振成像、计算机断层扫描、光声和红外热成像。与报道的谷胱甘肽耗竭剂不同,MnSe 中的 Mn 允许立即生成 OH,而无需预反应。同时,Mn 通过转化为 Mn2+来消耗谷胱甘肽。Au-MnSe 结合促进了光热转换和光催化反应,从而大大增强了内源性 H2O2 产生的 OH,并显著提高了体温。同时,有效地激活了免疫反应:肿瘤内程序性细胞死亡-1 和促炎细胞因子的表达增加到 4-7 倍;肿瘤区域中的细胞毒性和辅助性 T 淋巴细胞增加到 2.5 倍以上;表现出明显的、暂时的全身免疫刺激作用。获得了高肿瘤抑制率(≈97.3%)和大大延长的生存期。这种高度集成的设计协调了三种不同的治疗方法和四种不同的成像模态,为高性能治疗性纳米制剂提供了新的可能性。