State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Mol Biol Evol. 2022 May 3;39(5). doi: 10.1093/molbev/msac090.
Mitochondria are essential organelles in eukaryotic cells that provide critical support for energetic and metabolic homeostasis. Although the elimination of pathogenic mitochondrial DNA (mtDNA) mutations in somatic cells has been observed, the mechanisms to maintain proper functions despite their mtDNA mutation load are poorly understood. In this study, we analyzed somatic mtDNA mutations in more than 30,000 single human peripheral and bone marrow mononuclear cells. We observed a significant overrepresentation of homoplasmic mtDNA mutations in B, T, and natural killer (NK) lymphocytes. Intriguingly, their overall mutational burden was lower than that in hematopoietic progenitors and myeloid cells. This characteristic mtDNA mutational landscape indicates a genetic bottleneck during lymphoid development, as confirmed with single-cell datasets from multiple platforms and individuals. We further demonstrated that mtDNA replication lags behind cell proliferation in both pro-B and pre-B progenitor cells, thus likely causing the genetic bottleneck by diluting mtDNA copies per cell. Through computational simulations and approximate Bayesian computation (ABC), we recapitulated this lymphocyte-specific mutational landscape and estimated the minimal mtDNA copies as <30 in T, B, and NK lineages. Our integrative analysis revealed a novel process of a lymphoid-specific mtDNA genetic bottleneck, thus illuminating a potential mechanism used by highly metabolically active immune cells to limit their mtDNA mutation load.
线粒体是真核细胞中的重要细胞器,为能量和代谢稳态提供关键支持。虽然已经观察到体细胞中致病性线粒体 DNA(mtDNA)突变的消除,但对于尽管存在 mtDNA 突变负荷仍能维持正常功能的机制仍知之甚少。在这项研究中,我们分析了超过 30000 个人类外周血和骨髓单个核细胞中的体细胞 mtDNA 突变。我们观察到 B、T 和自然杀伤(NK)淋巴细胞中同质 mtDNA 突变的显著过表达。有趣的是,它们的总突变负担低于造血祖细胞和髓系细胞。这种特征性的 mtDNA 突变景观表明在淋巴细胞发育过程中存在遗传瓶颈,这一点通过来自多个平台和个体的单细胞数据集得到了证实。我们进一步表明,mtDNA 复制在 pro-B 和 pre-B 祖细胞中落后于细胞增殖,从而通过稀释每个细胞中的 mtDNA 拷贝数导致遗传瓶颈。通过计算模拟和近似贝叶斯计算(ABC),我们再现了这种淋巴细胞特异性的突变景观,并估计 T、B 和 NK 谱系中的最小 mtDNA 拷贝数为 <30。我们的综合分析揭示了一种新的淋巴细胞特异性 mtDNA 遗传瓶颈过程,从而阐明了高度代谢活跃的免疫细胞用来限制其 mtDNA 突变负荷的潜在机制。