Suppr超能文献

通过可控溶质偏析和α-Mn纳米析出实现的可持续超高强度Fe18Mn3Ti马氏体时效钢。

A sustainable ultra-high strength Fe18Mn3Ti maraging steel through controlled solute segregation and α-Mn nanoprecipitation.

作者信息

Kwiatkowski da Silva A, Souza Filho I R, Lu W, Zilnyk K D, Hupalo M F, Alves L M, Ponge D, Gault B, Raabe D

机构信息

Department of Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany.

Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, PR China.

出版信息

Nat Commun. 2022 Apr 28;13(1):2330. doi: 10.1038/s41467-022-30019-x.

Abstract

The enormous magnitude of 2 billion tons of alloys produced per year demands a change in design philosophy to make materials environmentally, economically, and socially more sustainable. This disqualifies the use of critical elements that are rare or have questionable origin. Amongst the major alloy strengthening mechanisms, a high-dispersion of second-phase precipitates with sizes in the nanometre range is particularly effective for achieving ultra-high strength. Here, we propose an alternative segregation-based strategy for sustainable steels, free of critical elements, which are rendered ultrastrong by second-phase nano-precipitation. We increase the Mn-content in a supersaturated, metastable Fe-Mn solid solution to trigger compositional fluctuations and nano-segregation in the bulk. These fluctuations act as precursors for the nucleation of an unexpected α-Mn phase, which impedes dislocation motion, thus enabling precipitation strengthening. Our steel outperforms most common commercial alloys, yet it is free of critical elements, making it a new platform for sustainable alloy design.

摘要

每年生产20亿吨合金的巨大规模要求改变设计理念,以使材料在环境、经济和社会方面更具可持续性。这排除了使用稀有或来源存疑的关键元素。在主要的合金强化机制中,尺寸在纳米范围内的第二相析出物的高度弥散对于实现超高强度尤为有效。在此,我们提出一种基于偏析的可持续钢替代策略,该钢不含关键元素,通过第二相纳米析出而具备超强性能。我们在过饱和的亚稳Fe-Mn固溶体中增加Mn含量,以引发体相中的成分波动和纳米偏析。这些波动充当意外的α-Mn相形核的前驱体,阻碍位错运动,从而实现析出强化。我们的钢性能优于大多数常见商业合金,且不含关键元素,使其成为可持续合金设计的新平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd19/9050706/6d84ec50af49/41467_2022_30019_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验