Suppr超能文献

使用控制理论方法识别子痫前期相关基因。

Identifying preeclampsia-associated genes using a control theory method.

机构信息

UniSA STEM, University of South Australia, Mawson Lakes, 5095, SA, Australia.

Pregnancy Research Centre, Dept of Obstetrics & Gynaecology, University of Melbourne, Royal Women's Hospital, Melbourne, 3052, VIC, Australia.

出版信息

Brief Funct Genomics. 2022 Jul 27;21(4):296-309. doi: 10.1093/bfgp/elac006.

Abstract

Preeclampsia is a pregnancy-specific disease that can have serious effects on the health of both mothers and their offspring. Predicting which women will develop preeclampsia in early pregnancy with high accuracy will allow for improved management. The clinical symptoms of preeclampsia are well recognized, however, the precise molecular mechanisms leading to the disorder are poorly understood. This is compounded by the heterogeneous nature of preeclampsia onset, timing and severity. Indeed a multitude of poorly defined causes including genetic components implicates etiologic factors, such as immune maladaptation, placental ischemia and increased oxidative stress. Large datasets generated by microarray and next-generation sequencing have enabled the comprehensive study of preeclampsia at the molecular level. However, computational approaches to simultaneously analyze the preeclampsia transcriptomic and network data and identify clinically relevant information are currently limited. In this paper, we proposed a control theory method to identify potential preeclampsia-associated genes based on both transcriptomic and network data. First, we built a preeclampsia gene regulatory network and analyzed its controllability. We then defined two types of critical preeclampsia-associated genes that play important roles in the constructed preeclampsia-specific network. Benchmarking against differential expression, betweenness centrality and hub analysis we demonstrated that the proposed method may offer novel insights compared with other standard approaches. Next, we investigated subtype specific genes for early and late onset preeclampsia. This control theory approach could contribute to a further understanding of the molecular mechanisms contributing to preeclampsia.

摘要

子痫前期是一种妊娠特有的疾病,会对母婴健康造成严重影响。早期准确预测哪些女性会患上子痫前期,可以改善管理。子痫前期的临床症状已得到充分认识,但其确切的分子机制尚不清楚。这是由于子痫前期的发病、时间和严重程度存在异质性。事实上,许多定义不明确的原因,包括遗传成分,都暗示了病因因素,如免疫失调、胎盘缺血和氧化应激增加。微阵列和下一代测序产生的大型数据集使子痫前期在分子水平上得到了全面研究。然而,目前用于同时分析子痫前期转录组和网络数据并识别临床相关信息的计算方法有限。在本文中,我们提出了一种控制理论方法,基于转录组和网络数据来识别潜在的子痫前期相关基因。首先,我们构建了子痫前期基因调控网络,并分析了其可控性。然后,我们定义了两种类型的关键子痫前期相关基因,它们在构建的子痫前期特异性网络中发挥着重要作用。通过与差异表达、介数中心性和枢纽分析的基准测试,我们证明了与其他标准方法相比,该方法可能提供新的见解。接下来,我们研究了早发型和晚发型子痫前期的亚型特异性基因。这种控制理论方法可以帮助我们进一步了解导致子痫前期的分子机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ba6/9328024/3975d4bc300f/elac006f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验