Suppr超能文献

运用 DeepLab v3+ 语义分割技术评估血小板活化。

Using DeepLab v3 + -based semantic segmentation to evaluate platelet activation.

机构信息

Department of Mechanical Engineering, College of Engineering, National Chiao Tung University, Hsin-Chu, Taiwan.

Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.

出版信息

Med Biol Eng Comput. 2022 Jun;60(6):1775-1785. doi: 10.1007/s11517-022-02575-3. Epub 2022 Apr 29.

Abstract

This research used DeepLab v3 + -based semantic segmentation to automatically evaluate the platelet activation process and count the number of platelets from scanning electron microscopy (SEM) images. Current activated platelet recognition and counting methods include (a) using optical microscopy or SEM images to identify and manually count platelets at different stages, or (b) using flow cytometry to automatically recognize and count platelets. However, the former is time- and labor-consuming, while the latter cannot be employed due to the complicated morphology of platelet transformation during activation. Additionally, because of how complicated the transformation of platelets is, current blood-cell image analysis methods, such as logistic regression or convolution neural networks, cannot precisely recognize transformed platelets. Therefore, this study used DeepLab v3 + , a powerful learning model for semantic segmentation of image analysis, to automatically recognize and count platelets at different activation stages from SEM images. Deformable convolution, a pretrained model, and deep supervision were added to obtain additional platelet transformation features and higher accuracy. The number of activated platelets was predicted by dividing the segmentation predicted platelet area by the average platelet area. The results showed that the model counted the activated platelets at different stages from the SEM images, achieving an error rate within 20%. The error rate was approximately 10% for stages 2 and 4. The proposed approach can thus save labor and time for evaluating platelet activation and facilitate related research.

摘要

本研究采用基于 DeepLab v3+的语义分割自动评估血小板活化过程,并从扫描电子显微镜 (SEM) 图像中计算血小板数量。目前的活化血小板识别和计数方法包括:(a) 使用光学显微镜或 SEM 图像识别不同阶段的血小板并手动计数,或 (b) 使用流式细胞术自动识别和计数血小板。然而,前者耗时耗力,而后者由于血小板在活化过程中形态复杂而无法采用。此外,由于血小板转化的复杂性,当前的血细胞图像分析方法,如逻辑回归或卷积神经网络,无法精确识别转化的血小板。因此,本研究使用 DeepLab v3+,一种强大的图像分析语义分割学习模型,从 SEM 图像中自动识别和计数不同活化阶段的血小板。通过添加可变形卷积、预训练模型和深度监督,获得更多血小板转化特征和更高的准确性。通过将分割预测的血小板区域除以平均血小板区域来预测活化血小板的数量。结果表明,该模型可以从 SEM 图像中计算出不同阶段的活化血小板,错误率在 20%以内。对于第 2 阶段和第 4 阶段,错误率约为 10%。因此,该方法可以节省评估血小板活化的劳动力和时间,促进相关研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验