Department of Experimental Physics, Saarland University, Campus E2 6, Saarbrücken, Germany.
Theoretical Medicine and Biosciences, Saarland University, Campus University Hospital, Homburg, Germany.
PLoS Comput Biol. 2018 Jun 15;14(6):e1006278. doi: 10.1371/journal.pcbi.1006278. eCollection 2018 Jun.
The manual evaluation, classification and counting of biological objects demands for an enormous expenditure of time and subjective human input may be a source of error. Investigating the shape of red blood cells (RBCs) in microcapillary Poiseuille flow, we overcome this drawback by introducing a convolutional neural regression network for an automatic, outlier tolerant shape classification. From our experiments we expect two stable geometries: the so-called 'slipper' and 'croissant' shapes depending on the prevailing flow conditions and the cell-intrinsic parameters. Whereas croissants mostly occur at low shear rates, slippers evolve at higher flow velocities. With our method, we are able to find the transition point between both 'phases' of stable shapes which is of high interest to ensuing theoretical studies and numerical simulations. Using statistically based thresholds, from our data, we obtain so-called phase diagrams which are compared to manual evaluations. Prospectively, our concept allows us to perform objective analyses of measurements for a variety of flow conditions and to receive comparable results. Moreover, the proposed procedure enables unbiased studies on the influence of drugs on flow properties of single RBCs and the resulting macroscopic change of the flow behavior of whole blood.
手动评估、分类和计数生物对象需要大量的时间和主观的人力投入,并且可能会产生误差。为了克服这一缺点,我们在研究微毛细管泊肃叶流动中红细胞(RBC)的形状时,引入了一种卷积神经网络回归模型,用于自动、容忍异常值的形状分类。通过我们的实验,我们预计会出现两种稳定的形状:所谓的“拖鞋”和“新月”形状,这取决于占主导地位的流动条件和细胞内在参数。新月形状主要出现在低剪切率下,而拖鞋形状则在较高的流速下演变。通过我们的方法,我们能够找到两种稳定形状之间的过渡点,这对于后续的理论研究和数值模拟非常重要。使用基于统计学的阈值,我们从数据中获得所谓的相图,并将其与手动评估进行比较。有前景的是,我们的概念允许我们对各种流动条件下的测量进行客观分析,并获得可比的结果。此外,所提出的程序能够进行无偏研究,研究药物对单个 RBC 流动特性的影响,以及对全血流动行为的宏观变化。