NTT Basic Research Laboratories, NTT Corporation, Atsugi-shi, Kanagawa 243-0198, Japan.
Nat Nanotechnol. 2014 Jul;9(7):520-4. doi: 10.1038/nnano.2014.107. Epub 2014 Jun 15.
Nanoelectromechanical systems (NEMS), utilizing localized mechanical vibrations, have found application in sensors, signal processors and in the study of macroscopic quantum mechanics. The integration of multiple mechanical elements via electrical or optical means remains a challenge in the realization of NEMS circuits. Here, we develop a phonon waveguide using a one-dimensional array of suspended membranes that offers purely mechanical means to integrate isolated NEMS resonators. We demonstrate that the phonon waveguide can support and guide mechanical vibrations and that the periodic membrane arrangement also creates a phonon bandgap that enables control of the phonon propagation velocity. Furthermore, embedding a phonon cavity into the phonon waveguide allows mobile mechanical vibrations to be dynamically switched or transferred from the waveguide to the cavity, thereby illustrating the viability of waveguide-resonator coupling. These highly functional traits of the phonon waveguide architecture exhibit all the components necessary to permit the realization of all-phononic NEMS circuits.
纳米机电系统(NEMS)利用局部机械振动,已在传感器、信号处理器和宏观量子力学研究中得到应用。通过电气或光学手段集成多个机械元件仍然是实现 NEMS 电路的一个挑战。在这里,我们开发了一种利用悬浮膜一维阵列的声子波导,它为集成孤立的 NEMS 谐振器提供了纯机械手段。我们证明,声子波导可以支持和引导机械振动,并且周期性的膜排列也会产生声子能带隙,从而可以控制声子的传播速度。此外,将声子腔嵌入声子波导中,可以使移动的机械振动从波导动态切换或转移到腔中,从而说明了波导-谐振器耦合的可行性。这种声子波导结构的高度功能特性展示了实现全声子 NEMS 电路所需的所有组件。