Pan Duo, Yang Gui, Abo-Dief Hala M, Dong Jingwen, Su Fengmei, Liu Chuntai, Li Yifan, Bin Xu Ben, Murugadoss Vignesh, Naik Nithesh, El-Bahy Salah M, El-Bahy Zeinhom M, Huang Minan, Guo Zhanhu
Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, People's Republic of China.
Integrated Composites Laboratory (ICL), Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
Nanomicro Lett. 2022 Apr 30;14(1):118. doi: 10.1007/s40820-022-00863-z.
With the innovation of microelectronics technology, the heat dissipation problem inside the device will face a severe test. In this work, cellulose aerogel (CA) with highly enhanced thermal conductivity (TC) in vertical planes was successfully obtained by constructing a vertically aligned silicon carbide nanowires (SiC NWs)/boron nitride (BN) network via the ice template-assisted strategy. The unique network structure of SiC NWs connected to BN ensures that the TC of the composite in the vertical direction reaches 2.21 W m K at a low hybrid filler loading of 16.69 wt%, which was increased by 890% compared to pure epoxy (EP). In addition, relying on unique porous network structure of CA, EP-based composite also showed higher TC than other comparative samples in the horizontal direction. Meanwhile, the composite exhibits good electrically insulating with a volume electrical resistivity about 2.35 × 10 Ω cm and displays excellent electromagnetic wave absorption performance with a minimum reflection loss of - 21.5 dB and a wide effective absorption bandwidth (< - 10 dB) from 8.8 to 11.6 GHz. Therefore, this work provides a new strategy for manufacturing polymer-based composites with excellent multifunctional performances in microelectronic packaging applications.
随着微电子技术的革新,器件内部的散热问题将面临严峻考验。在本工作中,通过冰模板辅助策略构建垂直排列的碳化硅纳米线(SiC NWs)/氮化硼(BN)网络,成功制备出垂直平面内热导率(TC)大幅提高的纤维素气凝胶(CA)。连接到BN的SiC NWs独特网络结构确保了在16.69 wt%的低混合填料负载下,复合材料在垂直方向的TC达到2.21 W m⁻¹ K⁻¹,相较于纯环氧树脂(EP)提高了890%。此外,基于CA独特的多孔网络结构,基于EP的复合材料在水平方向也显示出比其他对比样品更高的TC。同时,该复合材料具有良好的电绝缘性,体积电阻率约为2.35×10¹³ Ω·cm,并且显示出优异的电磁波吸收性能,最小反射损耗为-21.5 dB,在8.8至11.6 GHz范围内具有宽有效吸收带宽(< -10 dB)。因此,本工作为在微电子封装应用中制造具有优异多功能性能的聚合物基复合材料提供了一种新策略。