Jin Xinyang, Gao Feng, Qin Mingxin, Yu Yunpeng, Zhao Yue, Shao Tianyi, Chen Cai, Zhang Wenhua, Xie Bin, Xiong Yujie, Yang Lihua, Wu Yuen
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China.
CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China.
ACS Nano. 2022 May 24;16(5):7755-7771. doi: 10.1021/acsnano.1c11647. Epub 2022 May 1.
The inability of commercial personal protective equipment (PPE) to inactivate microbes in the droplets/aerosols they intercept makes used PPE a potential source of cross-contamination. To make PPE spontaneously and continuously antimicrobial, we incorporate PPE with oxidase-like catalysts, which efficiently convert O into reactive oxygen species (ROS) without requiring any externally applied stimulus. Using a single-atom catalyst (SAC) nanoparticle containing atomically dispersed copper atoms as the reactive centers (Cu-SAC) and a silver-palladium bimetallic alloy nanoparticle (AgPd) as models for oxidase-like catalysts, we show that the incorporation of oxidase-like catalysts enables PPE to inactivate bacteria in the droplets/aerosols they intercept without requiring any externally applied stimulus. Notably, this approach works both for PPE that are fibrous and woven such as a commercial KN95 facial respirator and for those made of solid plastics such as an apron. This work suggests a feasible and global approach for preventing PPE from spreading infectious diseases.
商用个人防护装备(PPE)无法使它们拦截的飞沫/气溶胶中的微生物失活,这使得用过的PPE成为交叉污染的潜在来源。为了使PPE具有自发且持续的抗菌性能,我们将PPE与类氧化酶催化剂相结合,该催化剂能有效将O转化为活性氧(ROS),且无需任何外部施加的刺激。以含有原子分散的铜原子作为反应中心的单原子催化剂(SAC)纳米颗粒(Cu-SAC)和银钯双金属合金纳米颗粒(AgPd)作为类氧化酶催化剂的模型,我们表明,加入类氧化酶催化剂能使PPE在无需任何外部施加刺激的情况下,使它们拦截的飞沫/气溶胶中的细菌失活。值得注意的是,这种方法对于诸如商用KN95面部呼吸器等纤维状和编织状的PPE以及诸如围裙等由固体塑料制成的PPE均有效。这项工作为防止PPE传播传染病提出了一种可行的全球通用方法。