Svensson Fredric G, Daniel Geoffrey, Tai Cheuk-Wai, Seisenbaeva Gulaim A, Kessler Vadim G
Department of Molecular Sciences, Swedish University of Agricultural Sciences Box 7015 750 07 Uppsala Sweden
Department of Biomaterials and Technology/Wood Science, Swedish University of Agricultural Sciences Box 7008 75007 Uppsala Sweden.
RSC Adv. 2020 Feb 14;10(12):6873-6883. doi: 10.1039/c9ra10691j. eCollection 2020 Feb 13.
Titanium (oxo-) alkoxide phosphonate complexes were synthesized using different titanium precursors and -butylphosphonic acid (BPA) as molecular models for interaction between phosphonates and titania surfaces and to investigate the solution stability of these species. Reflux of titanium(iv) ethoxide or titanium(iv)(diisopropoxide)bis(2,4-pentadionate) with -butylphosphonic acid in toluene-ethanol mixture or acetone yielded seven titanium alkoxide phosphonate complexes; [Ti(μ-O)(μ-O)(μ-HOEt)(μ-OEt)(μ-OEt)(μ-BPA)(μ-HBPA)(μ-BPA)(μ-HBPA)]·3EtOH, 1, [TiO(μ-OEt)(μ-OEt)(μ-BPA)], 2, [Ti(μ-O)(μ-OEt)(μ-HOEt)(μ-PBA)(μ-HPBA)]·4EtOH, 3, [Ti(μ-O)(μ-OEt)(μ-HOEt)(μ-PBA)(μ-HPBA)]·2EtOH, 4, [Ti(μ-O)(μ-O)(μ-OEt)(μ-OEt)(μ-BPA)(μ-HBPA)], 5, [Ti(μ-OPr)(acac)(μ-BPA)], 6 and [Ti(μ-O)(μ-O)(μ-OEt)(μ-OEt)(μ-HOEt)(μ-BPA)], 7. The binding mode of BPA to the titanium oxo-core were either double or triple bridging or a combination of the two. No monodentate or chelating coordination was observed. P NMR spectrometry of dissolved single crystals indicates that 1 and 5 retain their solid-state structures in solution, the latter even on moderate heating, while 6 and 7 dissolved into several other forms. The complexes were found to be sensitive towards hydrolysis, proceeding in a topotactic fashion with densification of the material into plates and lamellae resulting finally in "core-shell" nanoparticles with a crystalline core (anatase) and an amorphous outer shell upon contact with water at room temperature as observed by HRTEM and AFM analyses. P NMR data supported degradation after addition of water to solutions of the complexes. Hydrolysis under different conditions affords complex oxide structures of different morphologies.
使用不同的钛前驱体和正丁基膦酸(BPA)合成了钛(氧代)醇盐膦酸盐配合物,作为膦酸盐与二氧化钛表面相互作用的分子模型,并研究这些物质在溶液中的稳定性。将乙醇钛(IV)或二异丙醇钛(IV)双(2,4-戊二酮)与正丁基膦酸在甲苯-乙醇混合物或丙酮中回流,得到了七种钛醇盐膦酸盐配合物:[Ti(μ-O)(μ-O)(μ-HOEt)(μ-OEt)(μ-OEt)(μ-BPA)(μ-HBPA)(μ-BPA)(μ-HBPA)]·3EtOH,1;[TiO(μ-OEt)(μ-OEt)(μ-BPA)],2;[Ti(μ-O)(μ-OEt)(μ-HOEt)(μ-PBA)(μ-HPBA)]·4EtOH,3;[Ti(μ-O)(μ-OEt)(μ-HOEt)(μ-PBA)(μ-HPBA)]·2EtOH,4;[Ti(μ-O)(μ-O)(μ-OEt)(μ-OEt)(μ-BPA)(μ-HBPA)],5;[Ti(μ-OPr)(acac)(μ-BPA)],6;[Ti(μ-O)(μ-O)(μ-OEt)(μ-OEt)(μ-HOEt)(μ-BPA)],7。BPA与钛氧核的结合模式为双桥联或三桥联,或两者结合。未观察到单齿或螯合配位。溶解单晶的³¹P NMR光谱表明,1和5在溶液中保留其固态结构,后者即使在适度加热时也是如此,而6和7溶解成其他几种形式。发现这些配合物对水解敏感,水解以拓扑规整的方式进行,材料致密化形成薄片和片层,最终在室温下与水接触时形成具有结晶核(锐钛矿)和无定形外壳的“核壳”纳米颗粒,这通过高分辨率透射电子显微镜(HRTEM)和原子力显微镜(AFM)分析观察到。³¹P NMR数据支持在向配合物溶液中加水后发生降解。在不同条件下的水解产生不同形态的复合氧化物结构。