Suppr超能文献

影像组学列线图在前列腺癌与增生鉴别诊断中的应用价值

Application Value of Radiomic Nomogram in the Differential Diagnosis of Prostate Cancer and Hyperplasia.

作者信息

Gui Shaogao, Lan Min, Wang Chaoxiong, Nie Si, Fan Bing

机构信息

Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China.

Department of Orthopedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China.

出版信息

Front Oncol. 2022 Apr 14;12:859625. doi: 10.3389/fonc.2022.859625. eCollection 2022.

Abstract

OBJECTIVE

Prostate cancer and hyperplasia require different treatment strategies and have completely different outcomes; thus, preoperative identification of prostate cancer and hyperplasia is very important. The purpose of this study was to evaluate the application value of magnetic resonance imaging (MRI)-derived radiomic nomogram based on T2-weighted images (T2WI) in differentiating prostate cancer and hyperplasia.

MATERIALS AND METHODS

One hundred forty-six patients (66 cases of prostate cancer and 80 cases of prostate hyperplasia) who were confirmed by surgical pathology between September 2019 and September 2019 were selected. We manually delineated T2WI of all patients using ITK-SNAP software and radiomic analysis using Analysis Kit (AK) software. A total of 396 tumor texture features were extracted. Subsequently, the effective features were selected using the LASSO algorithm, and the radiomic feature model was constructed. Next, combined with independent clinical risk factors, a multivariate Logistic regression model was used to establish a radiomic nomogram. The receiver operator characteristic (ROC) curve was used to evaluate the prediction performance of the radiomic nomogram. Finally, the clinical application value of the nomogram was evaluated by decision curve analysis.

RESULTS

The PSA and the selected imaging features were significantly correlated with the differential diagnosis of prostate cancer and hyperplasia. The radiomic model had good discrimination efficiency for prostate cancer and hyperplasia. The training set (AUC = 0.85; 95% CI: 0.77-0.92) and testing set (AUC = 0.84; 95% CI: 0.72-0.96) were effective. The radiomic nomogram, combined with the radiomic characteristics of MRI and independent clinical risk factors, showed better differentiation efficiency in the training set (AUC = 0.91; 95% CI: 0.85-0.97) and testing set (AUC = 0.90; 95% CI: 0.81-0.99). The decision curve showed the clinical application value of the radiomic nomogram.

CONCLUSION

The radiomic nomogram of T2-MRI combined with clinical risk factors can easily identify prostate cancer and hyperplasia. It also provides suggestions for further clinical events.

摘要

目的

前列腺癌和前列腺增生需要不同的治疗策略,且预后完全不同;因此,术前鉴别前列腺癌和前列腺增生非常重要。本研究旨在评估基于T2加权成像(T2WI)的磁共振成像(MRI)衍生的影像组学列线图在鉴别前列腺癌和前列腺增生中的应用价值。

材料与方法

选取2019年9月至2019年9月间经手术病理确诊的146例患者(前列腺癌66例,前列腺增生80例)。我们使用ITK-SNAP软件手动勾勒所有患者的T2WI,并使用分析套件(AK)软件进行影像组学分析。共提取396个肿瘤纹理特征。随后,使用LASSO算法选择有效特征,并构建影像组学特征模型。接下来,结合独立临床危险因素,使用多变量Logistic回归模型建立影像组学列线图。采用受试者操作特征(ROC)曲线评估影像组学列线图的预测性能。最后,通过决策曲线分析评估列线图的临床应用价值。

结果

前列腺特异性抗原(PSA)和所选影像特征与前列腺癌和前列腺增生的鉴别诊断显著相关。影像组学模型对前列腺癌和前列腺增生具有良好的鉴别效率。训练集(AUC = 0.85;95%CI:0.77 - 0.92)和测试集(AUC = 0.84;95%CI:0.72 - 0.96)均有效。结合MRI影像组学特征和独立临床危险因素的影像组学列线图在训练集(AUC = 0.91;95%CI:0.85 - 0.97)和测试集(AUC = 0.90;95%CI:0.81 - 0.99)中显示出更好的鉴别效率。决策曲线显示了影像组学列线图的临床应用价值。

结论

结合临床危险因素的T2-MRI影像组学列线图能够轻松鉴别前列腺癌和前列腺增生。它还为进一步的临床事件提供了建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0af7/9047828/b965bc83027e/fonc-12-859625-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验