Naor Tal, Nogin Yevgeni, Nehme Elias, Ferdman Boris, Weiss Lucien E, Alalouf Onit, Shechtman Yoav
Department of Biomedical Engineering and Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion-IIT, Haifa, 3200003, Israel.
Russell Berrie Nanotechnology Institute, Technion-IIT, Haifa 3200003, Israel.
iScience. 2022 Apr 4;25(5):104197. doi: 10.1016/j.isci.2022.104197. eCollection 2022 May 20.
The study of cell cycle progression and regulation is important to our understanding of fundamental biophysics, aging, and disease mechanisms. Local chromatin movements are generally considered to be constrained and relatively consistent during all interphase stages, although recent advances in our understanding of genome organization challenge this claim. Here, we use high spatiotemporal resolution, 4D (x, y, z and time) localization microscopy by point-spread-function (PSF) engineering and deep learning-based image analysis, for live imaging of (MEF 3T3) and MEF 3T3 double Lamin A Knockout (LmnaKO) cell lines, to characterize telomere diffusion during the interphase. We detected varying constraint levels imposed on chromatin, which are prominently decreased during G0/G1. Our 4D measurements of telomere diffusion offer an effective method to investigate chromatin dynamics and reveal cell-cycle-dependent motion constraints, which may be caused by various cellular processes.
细胞周期进程与调控的研究对于我们理解基本生物物理学、衰老及疾病机制至关重要。局部染色质运动在所有间期阶段通常被认为是受限且相对一致的,尽管我们对基因组组织的理解方面的最新进展对这一观点提出了挑战。在此,我们通过点扩散函数(PSF)工程和基于深度学习的图像分析,利用高时空分辨率的4D(x、y、z和时间)定位显微镜,对(MEF 3T3)和MEF 3T3双Lamin A基因敲除(LmnaKO)细胞系进行实时成像,以表征间期端粒扩散情况。我们检测到染色质受到的约束水平各异,在G0/G1期显著降低。我们对端粒扩散的4D测量提供了一种有效的方法来研究染色质动力学,并揭示细胞周期依赖性的运动约束,这可能由各种细胞过程引起。