Suppr超能文献

基于面部特征点调整眼睛宽高比以进行强力眨眼检测。

Adjusting eye aspect ratio for strong eye blink detection based on facial landmarks.

作者信息

Dewi Christine, Chen Rung-Ching, Jiang Xiaoyi, Yu Hui

机构信息

Department of Information Management, Chaoyang University of Technology, Taichung, Taiwan, Taiwan.

Department of Information Technology, Satya Wacana Christian University, Salatiga, Central Java, Indonesia.

出版信息

PeerJ Comput Sci. 2022 Apr 18;8:e943. doi: 10.7717/peerj-cs.943. eCollection 2022.

Abstract

Blink detection is an important technique in a variety of settings, including facial movement analysis and signal processing. However, automatic blink detection is very challenging because of the blink rate. This research work proposed a real-time method for detecting eye blinks in a video series. Automatic facial landmarks detectors are trained on a real-world dataset and demonstrate exceptional resilience to a wide range of environmental factors, including lighting conditions, face emotions, and head position. For each video frame, the proposed method calculates the facial landmark locations and extracts the vertical distance between the eyelids using the facial landmark positions. Our results show that the recognizable landmarks are sufficiently accurate to determine the degree of eye-opening and closing consistently. The proposed algorithm estimates the facial landmark positions, extracts a single scalar quantity by using Modified Eye Aspect Ratio (Modified EAR) and characterizing the eye closeness in each frame. Finally, blinks are detected by the Modified EAR threshold value and detecting eye blinks as a pattern of EAR values in a short temporal window. According to the results from a typical data set, it is seen that the suggested approach is more efficient than the state-of-the-art technique.

摘要

眨眼检测是包括面部运动分析和信号处理在内的各种场景中的一项重要技术。然而,由于眨眼频率,自动眨眼检测极具挑战性。这项研究工作提出了一种在视频序列中检测眨眼的实时方法。自动面部地标检测器在真实世界数据集上进行训练,并对包括光照条件、面部表情和头部位置在内的各种环境因素表现出非凡的适应性。对于每个视频帧,该方法计算面部地标位置,并利用面部地标位置提取眼睑之间的垂直距离。我们的结果表明,可识别的地标足够精确,能够始终如一地确定眼睛睁开和闭合的程度。所提出的算法估计面部地标位置,通过使用修正眼宽比(Modified EAR)提取单个标量,并表征每一帧中的眼睛闭合程度。最后,通过修正EAR阈值检测眨眼,并将眨眼检测为短时间窗口内EAR值的一种模式。根据典型数据集的结果,可以看出所提出的方法比现有技术更有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9250/9044337/faa85b6ca807/peerj-cs-08-943-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验