Suppr超能文献

基于移动应用评论的需求工程的时间动态

Temporal dynamics of requirements engineering from mobile app reviews.

作者信息

Alves de Lima Vitor Mesaque, de Araújo Adailton Ferreira, Marcondes Marcacini Ricardo

机构信息

Faculty of Computing (FACOM), Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil.

Institute of Mathematics and Computer Sciences (ICMC), University of São Paulo (USP), São Carlos, São Paulo, Brazil.

出版信息

PeerJ Comput Sci. 2022 Mar 15;8:e874. doi: 10.7717/peerj-cs.874. eCollection 2022.

Abstract

Opinion mining for app reviews aims to analyze people's comments from app stores to support data-driven requirements engineering activities, such as bug report classification, new feature requests, and usage experience. However, due to a large amount of textual data, manually analyzing these comments is challenging, and machine-learning-based methods have been used to automate opinion mining. Although recent methods have obtained promising results for extracting and categorizing requirements from users' opinions, the main focus of existing studies is to help software engineers to explore historical user behavior regarding software requirements. Thus, existing models are used to support corrective maintenance from app reviews, while we argue that this valuable user knowledge can be used for preventive software maintenance. This paper introduces the temporal dynamics of requirements analysis to answer the following question: how to predict initial trends on defective requirements from users' opinions before negatively impacting the overall app's evaluation? We present the MAPP-Reviews (Monitoring App Reviews) method, which (i) extracts requirements with negative evaluation from app reviews, (ii) generates time series based on the frequency of negative evaluation, and (iii) trains predictive models to identify requirements with higher trends of negative evaluation. The experimental results from approximately 85,000 reviews show that opinions extracted from user reviews provide information about the future behavior of an app requirement, thereby allowing software engineers to anticipate the identification of requirements that may affect the future app's ratings.

摘要

应用评论的观点挖掘旨在分析来自应用商店的用户评论,以支持数据驱动的需求工程活动,如错误报告分类、新功能请求和使用体验。然而,由于文本数据量巨大,手动分析这些评论具有挑战性,因此基于机器学习的方法已被用于自动化观点挖掘。尽管最近的方法在从用户观点中提取和分类需求方面取得了有希望的结果,但现有研究的主要重点是帮助软件工程师探索关于软件需求的历史用户行为。因此,现有模型用于支持基于应用评论的纠正性维护,而我们认为这些宝贵的用户知识可用于预防性软件维护。本文介绍了需求分析的时间动态,以回答以下问题:如何在对应用的整体评价产生负面影响之前,根据用户观点预测有缺陷需求的初始趋势?我们提出了MAPP-Reviews(监控应用评论)方法,该方法(i)从应用评论中提取具有负面评价的需求,(ii)根据负面评价的频率生成时间序列,以及(iii)训练预测模型以识别具有较高负面评价趋势的需求。来自约85000条评论的实验结果表明,从用户评论中提取的观点提供了有关应用需求未来行为的信息,从而使软件工程师能够提前识别可能影响应用未来评级的需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a0d/9044251/a2605a4087aa/peerj-cs-08-874-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验