Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), University of California, San Francisco (UCSF), San Francisco, United States.
Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, United States.
Elife. 2021 Jan 14;10:e61812. doi: 10.7554/eLife.61812.
Biomedical data are usually analyzed at the univariate level, focused on a single primary outcome measure to provide insight into systems biology, complex disease states, and precision medicine opportunities. More broadly, these complex biological and disease states can be detected as common factors emerging from the relationships among measured variables using multivariate approaches. 'Syndromics' refers to an analytical framework for measuring disease states using principal component analysis and related multivariate statistics as primary tools for extracting underlying disease patterns. A key part of the syndromic workflow is the interpretation, the visualization, and the study of robustness of the main components that characterize the disease space. We present a new software package, , an open-source R package with utility for component visualization, interpretation, and stability for syndromic analysis. We document the implementation of and illustrate the use of the package in case studies of neurological trauma data.
生物医学数据通常在单变量水平进行分析,侧重于单一的主要结果测量指标,以深入了解系统生物学、复杂疾病状态和精准医疗机会。更广泛地说,这些复杂的生物和疾病状态可以通过多变量方法从测量变量之间的关系中出现的共同因素来检测。“综合征学”是指一种使用主成分分析和相关多元统计作为提取潜在疾病模式的主要工具来测量疾病状态的分析框架。综合征学工作流程的一个关键部分是对主要成分的解释、可视化和稳健性研究,这些主要成分用于描述疾病空间。我们提出了一个新的软件包, ,这是一个开源的 R 包,具有用于综合征学分析的组件可视化、解释和稳定性的实用程序。我们记录了 的实现,并通过神经创伤数据的案例研究说明了该软件包的使用。