文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多研究分析表明,诱发疼痛强度的表示分布在大脑系统中。

A multistudy analysis reveals that evoked pain intensity representation is distributed across brain systems.

机构信息

Dartmouth College, Hanover, New Hampshire, United States of America.

University of Colorado Boulder, Colorado, United States of America.

出版信息

PLoS Biol. 2022 May 2;20(5):e3001620. doi: 10.1371/journal.pbio.3001620. eCollection 2022 May.


DOI:10.1371/journal.pbio.3001620
PMID:35500023
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9098029/
Abstract

Information is coded in the brain at multiple anatomical scales: locally, distributed across regions and networks, and globally. For pain, the scale of representation has not been formally tested, and quantitative comparisons of pain representations across regions and networks are lacking. In this multistudy analysis of 376 participants across 11 studies, we compared multivariate predictive models to investigate the spatial scale and location of evoked heat pain intensity representation. We compared models based on (a) a single most pain-predictive region or resting-state network; (b) pain-associated cortical-subcortical systems developed from prior literature ("multisystem models"); and (c) a model spanning the full brain. We estimated model accuracy using leave-one-study-out cross-validation (CV; 7 studies) and subsequently validated in 4 independent holdout studies. All spatial scales conveyed information about pain intensity, but distributed, multisystem models predicted pain 20% more accurately than any individual region or network and were more generalizable to multimodal pain (thermal, visceral, and mechanical) and specific to pain. Full brain models showed no predictive advantage over multisystem models. These findings show that multiple cortical and subcortical systems are needed to decode pain intensity, especially heat pain, and that representation of pain experience may not be circumscribed by any elementary region or canonical network. Finally, the learner generalization methods we employ provide a blueprint for evaluating the spatial scale of information in other domains.

摘要

信息在大脑的多个解剖学尺度上进行编码:局部、分布在区域和网络之间以及全局。对于疼痛,其表示的尺度尚未经过正式测试,并且缺乏对跨区域和网络的疼痛表示进行定量比较。在这项涉及 11 项研究的 376 名参与者的多研究分析中,我们比较了多元预测模型,以研究诱发热痛强度表示的空间尺度和位置。我们比较了基于以下三种模型的结果:(a) 单个最能预测疼痛的区域或静息状态网络;(b) 基于先前文献开发的与疼痛相关的皮质-皮质下系统(“多系统模型”);以及 (c) 涵盖整个大脑的模型。我们使用留一研究外交叉验证(CV;7 项研究)来估计模型准确性,然后在 4 项独立的保留研究中进行验证。所有空间尺度都传达了关于疼痛强度的信息,但分布式、多系统模型比任何单个区域或网络更准确地预测疼痛,并且更适用于多模态疼痛(热、内脏和机械),并且更具体地针对疼痛。全脑模型在预测疼痛方面没有优于多系统模型的优势。这些发现表明,多个皮质和皮质下系统需要解码疼痛强度,尤其是热痛,并且疼痛体验的表示可能不受任何基本区域或规范网络的限制。最后,我们采用的学习器泛化方法为评估其他领域的信息空间尺度提供了蓝图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c04b/9098029/5809485f26fe/pbio.3001620.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c04b/9098029/1d3e46621441/pbio.3001620.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c04b/9098029/57d5721fd569/pbio.3001620.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c04b/9098029/2936cfdab67f/pbio.3001620.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c04b/9098029/58fb759acbfb/pbio.3001620.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c04b/9098029/6cd5ffac46e3/pbio.3001620.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c04b/9098029/d3f2e7a0a768/pbio.3001620.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c04b/9098029/cbab65704375/pbio.3001620.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c04b/9098029/5809485f26fe/pbio.3001620.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c04b/9098029/1d3e46621441/pbio.3001620.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c04b/9098029/57d5721fd569/pbio.3001620.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c04b/9098029/2936cfdab67f/pbio.3001620.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c04b/9098029/58fb759acbfb/pbio.3001620.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c04b/9098029/6cd5ffac46e3/pbio.3001620.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c04b/9098029/d3f2e7a0a768/pbio.3001620.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c04b/9098029/cbab65704375/pbio.3001620.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c04b/9098029/5809485f26fe/pbio.3001620.g008.jpg

相似文献

[1]
A multistudy analysis reveals that evoked pain intensity representation is distributed across brain systems.

PLoS Biol. 2022-5

[2]
Finding Distributed Needles in Neural Haystacks.

J Neurosci. 2021-2-3

[3]
Multimodel Order Independent Component Analysis: A Data-Driven Method for Evaluating Brain Functional Network Connectivity Within and Between Multiple Spatial Scales.

Brain Connect. 2022-9

[4]
Graph theory analysis identified two hubs that connect sensorimotor and cognitive and cortical and subcortical nociceptive networks in the non-human primate.

Neuroimage. 2022-8-15

[5]
Pain-Evoked Reorganization in Functional Brain Networks.

Cereb Cortex. 2020-5-14

[6]
Co-representation of Functional Brain Networks Is Shaped by Cortical Myeloarchitecture and Reveals Individual Behavioral Ability.

J Neurosci. 2024-3-27

[7]
Multi-model order spatially constrained ICA reveals highly replicable group differences and consistent predictive results from resting data: A large N fMRI schizophrenia study.

Neuroimage Clin. 2023

[8]
Common and stimulus-type-specific brain representations of negative affect.

Nat Neurosci. 2022-6

[9]
A distributed fMRI-based signature for the subjective experience of fear.

Nat Commun. 2021-11-17

[10]
Combining spatial independent component analysis with regression to identify the subcortical components of resting-state FMRI functional networks.

Brain Connect. 2014-4

引用本文的文献

[1]
[The brain today is yesterday's psyche].

Orthopadie (Heidelb). 2025-7-24

[2]
Decoding pain chronification: mechanisms of the acute-to-chronic transition.

Front Mol Neurosci. 2025-6-26

[3]
Decoding pain: uncovering the factors that affect the performance of neuroimaging-based pain models.

Pain. 2025-2-1

[4]
Neuromarkers in addiction: definitions, development strategies, and recent advances.

J Neural Transm (Vienna). 2024-5

[5]
Towards a Real-Life Understanding of the Altered Functional Behaviour of the Default Mode and Salience Network in Chronic Pain: Are People with Chronic Pain Overthinking the Meaning of Their Pain?

J Clin Med. 2024-3-13

[6]
Fractal Similarity of Pain Brain Networks.

Adv Neurobiol. 2024

[7]
Chemogenetic Modulation of Posterior Insula CaMKIIa Neurons Alters Pain and Thermoregulation.

J Pain. 2024-3

[8]
Direct and Indirect Nociceptive Input from the Trigeminal Dorsal Horn to Pain-Modulating Neurons in the Rostral Ventromedial Medulla.

J Neurosci. 2023-8-9

[9]
When knowledge hurts: humans are willing to receive pain for obtaining non-instrumental information.

Proc Biol Sci. 2023-7-12

[10]
Computational and neural mechanisms of statistical pain learning.

Nat Commun. 2022-11-3

本文引用的文献

[1]
Neural and sociocultural mediators of ethnic differences in pain.

Nat Hum Behav. 2020-2-3

[2]
Behavioural and neural evidence for self-reinforcing expectancy effects on pain.

Nat Hum Behav. 2018-10-29

[3]
Different brain networks mediate the effects of social and conditioned expectations on pain.

Nat Commun. 2019-9-10

[4]
The cerebellum is involved in processing of predictions and prediction errors in a fear conditioning paradigm.

Elife. 2019-8-29

[5]
Shifting brain circuits in pain chronicity.

Hum Brain Mapp. 2019-7-12

[6]
Brain mechanisms of social touch-induced analgesia in females.

Pain. 2019-9

[7]
Microcircuit Mechanisms through which Mediodorsal Thalamic Input to Anterior Cingulate Cortex Exacerbates Pain-Related Aversion.

Neuron. 2019-4-25

[8]
An Empirical Comparison of Meta- and Mega-Analysis With Data From the ENIGMA Obsessive-Compulsive Disorder Working Group.

Front Neuroinform. 2019-1-8

[9]
Brain systems at the intersection of chronic pain and self-regulation.

Neurosci Lett. 2018-11-29

[10]
Representation, Pattern Information, and Brain Signatures: From Neurons to Neuroimaging.

Neuron. 2018-7-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索