Suppr超能文献

基于ENIGMA强迫症工作组数据的元分析与大分析的实证比较

An Empirical Comparison of Meta- and Mega-Analysis With Data From the ENIGMA Obsessive-Compulsive Disorder Working Group.

作者信息

Boedhoe Premika S W, Heymans Martijn W, Schmaal Lianne, Abe Yoshinari, Alonso Pino, Ameis Stephanie H, Anticevic Alan, Arnold Paul D, Batistuzzo Marcelo C, Benedetti Francesco, Beucke Jan C, Bollettini Irene, Bose Anushree, Brem Silvia, Calvo Anna, Calvo Rosa, Cheng Yuqi, Cho Kang Ik K, Ciullo Valentina, Dallaspezia Sara, Denys Damiaan, Feusner Jamie D, Fitzgerald Kate D, Fouche Jean-Paul, Fridgeirsson Egill A, Gruner Patricia, Hanna Gregory L, Hibar Derrek P, Hoexter Marcelo Q, Hu Hao, Huyser Chaim, Jahanshad Neda, James Anthony, Kathmann Norbert, Kaufmann Christian, Koch Kathrin, Kwon Jun Soo, Lazaro Luisa, Lochner Christine, Marsh Rachel, Martínez-Zalacaín Ignacio, Mataix-Cols David, Menchón José M, Minuzzi Luciano, Morer Astrid, Nakamae Takashi, Nakao Tomohiro, Narayanaswamy Janardhanan C, Nishida Seiji, Nurmi Erika L, O'Neill Joseph, Piacentini John, Piras Fabrizio, Piras Federica, Reddy Y C Janardhan, Reess Tim J, Sakai Yuki, Sato Joao R, Simpson H Blair, Soreni Noam, Soriano-Mas Carles, Spalletta Gianfranco, Stevens Michael C, Szeszko Philip R, Tolin David F, van Wingen Guido A, Venkatasubramanian Ganesan, Walitza Susanne, Wang Zhen, Yun Je-Yeon, Thompson Paul M, Stein Dan J, van den Heuvel Odile A, Twisk Jos W R

机构信息

Department of Psychiatry, Amsterdam University Medical Centers (UMC), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands.

Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands.

出版信息

Front Neuroinform. 2019 Jan 8;12:102. doi: 10.3389/fninf.2018.00102. eCollection 2018.

Abstract

Brain imaging communities focusing on different diseases have increasingly started to collaborate and to pool data to perform well-powered meta- and mega-analyses. Some methodologists claim that a one-stage individual-participant data (IPD) mega-analysis can be superior to a two-stage aggregated data meta-analysis, since more detailed computations can be performed in a mega-analysis. Before definitive conclusions regarding the performance of either method can be drawn, it is necessary to critically evaluate the methodology of, and results obtained by, meta- and mega-analyses. Here, we compare the inverse variance weighted random-effect meta-analysis model with a multiple linear regression mega-analysis model, as well as with a linear mixed-effects random-intercept mega-analysis model, using data from 38 cohorts including 3,665 participants of the ENIGMA-OCD consortium. We assessed the effect sizes and standard errors, and the fit of the models, to evaluate the performance of the different methods. The mega-analytical models showed lower standard errors and narrower confidence intervals than the meta-analysis. Similar standard errors and confidence intervals were found for the linear regression and linear mixed-effects random-intercept models. Moreover, the linear mixed-effects random-intercept models showed better fit indices compared to linear regression mega-analytical models. Our findings indicate that results obtained by meta- and mega-analysis differ, in favor of the latter. In multi-center studies with a moderate amount of variation between cohorts, a linear mixed-effects random-intercept mega-analytical framework appears to be the better approach to investigate structural neuroimaging data.

摘要

专注于不同疾病的脑成像研究群体越来越多地开始合作并整合数据,以进行有充分效力的荟萃分析和大型分析。一些方法学家声称,单阶段个体参与者数据(IPD)大型分析可能优于两阶段汇总数据荟萃分析,因为在大型分析中可以进行更详细的计算。在就这两种方法的性能得出明确结论之前,有必要严格评估荟萃分析和大型分析的方法及所得结果。在此,我们使用来自38个队列(包括3665名ENIGMA - OCD联盟参与者)的数据,将逆方差加权随机效应荟萃分析模型与多元线性回归大型分析模型以及线性混合效应随机截距大型分析模型进行比较。我们评估了效应大小和标准误差以及模型的拟合度,以评估不同方法的性能。大型分析模型显示出比荟萃分析更低的标准误差和更窄的置信区间。线性回归模型和线性混合效应随机截距模型的标准误差和置信区间相似。此外,与线性回归大型分析模型相比,线性混合效应随机截距模型显示出更好的拟合指数。我们的研究结果表明,荟萃分析和大型分析所得结果存在差异,后者更具优势。在队列间变异程度适中的多中心研究中,线性混合效应随机截距大型分析框架似乎是研究结构神经影像数据的更好方法。

相似文献

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验