Suppr超能文献

用于牙种植体应用的钛表面蚀刻的智能建模与优化。

Intelligent modeling and optimization of titanium surface etching for dental implant application.

机构信息

Surface Engineering Unit, AVITA Dental System, KFP-Dental Company, Tehran, Iran.

Research and Development Unit, AVITA Dental System, KFP-Dental Company, Tehran, Iran.

出版信息

Sci Rep. 2022 May 3;12(1):7184. doi: 10.1038/s41598-022-11254-0.

Abstract

Acid-etching is one of the most popular processes for the surface treatment of dental implants. In this paper, acid-etching of commercially pure titanium (cpTi) in a 48% HSO solution is investigated. The etching process time (0-8 h) and solution temperature (25-90 °C) are assumed to be the most effective operational conditions to affect the surface roughness parameters such as arithmetical mean deviation of the assessed profile on the surface (R) and average of maximum peak to valley height of the surface over considered length profile (R), as well as weight loss (WL) of the dental implants in etching process. For the first time, three multilayer perceptron artificial neural network (MLP-ANN) with two hidden layers was optimized to predict R, R, and WL. MLP is a feedforward class of ANN and ANN model that involves computations and mathematics which simulate the human-brain processes. The ANN models can properly predict R, R, and WL variations during etching as a function of process temperature and time. Moreover, WL can be increased to achieve a high Ra. At WL = 0, R of 0.5 μm is obtained, whereas R increases to 2 μm at WL = 0.78 μg/cm. Also, ANN model was fed into a nonlinear sorting genetic algorithm (NSGA-II) to establish the optimization process and the ability of this method has been proven to predict the optimized etching conditions.

摘要

酸蚀是牙科植入物表面处理最受欢迎的方法之一。本文研究了在 48%HSO 溶液中对商业纯钛(cpTi)的酸蚀。假设蚀刻工艺时间(0-8 小时)和溶液温度(25-90°C)是影响表面粗糙度参数的最有效操作条件,例如表面粗糙度评估轮廓的算术平均偏差(R)和表面上考虑长度轮廓的最大峰谷高度的平均值(R),以及牙科植入物在蚀刻过程中的重量损失(WL)。首次使用具有两个隐藏层的三层多层感知器人工神经网络(MLP-ANN)优化来预测 R、R 和 WL。MLP 是人工神经网络的前馈类,人工神经网络模型涉及计算和数学,这些计算和数学模拟了人类大脑的过程。人工神经网络模型可以正确预测蚀刻过程中 R、R 和 WL 的变化,作为工艺温度和时间的函数。此外,可以增加 WL 以达到高 Ra。在 WL=0 时,获得 0.5μm 的 R,而在 WL=0.78μg/cm 时 R 增加到 2μm。此外,将人工神经网络模型输入到非线性排序遗传算法(NSGA-II)中以建立优化过程,并且已经证明该方法能够预测优化的蚀刻条件。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验