Suppr超能文献

儿科慢性肾脏病机器学习模型的监测方法。

Monitoring Approaches for a Pediatric Chronic Kidney Disease Machine Learning Model.

机构信息

Division of Pediatric Hospital Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States.

Information Services Department, Lucile Packard Children's Hospital, Stanford, Palo Alto, California, United States.

出版信息

Appl Clin Inform. 2022 Mar;13(2):431-438. doi: 10.1055/s-0042-1746168. Epub 2022 May 4.

Abstract

OBJECTIVE

The purpose of this study is to evaluate the ability of three metrics to monitor for a reduction in performance of a chronic kidney disease (CKD) model deployed at a pediatric hospital.

METHODS

The CKD risk model estimates a patient's risk of developing CKD 3 to 12 months following an inpatient admission. The model was developed on a retrospective dataset of 4,879 admissions from 2014 to 2018, then run silently on 1,270 admissions from April to October, 2019. Three metrics were used to monitor its performance during the silent phase: (1) standardized mean differences (SMDs); (2) performance of a "membership model"; and (3) response distribution analysis. Observed patient outcomes for the 1,270 admissions were used to calculate prospective model performance and the ability of the three metrics to detect performance changes.

RESULTS

The deployed model had an area under the receiver-operator curve (AUROC) of 0.63 in the prospective evaluation, which was a significant decrease from an AUROC of 0.76 on retrospective data ( = 0.033). Among the three metrics, SMDs were significantly different for 66/75 (88%) of the model's input variables ( <0.05) between retrospective and deployment data. The membership model was able to discriminate between the two settings (AUROC = 0.71, <0.0001) and the response distributions were significantly different ( <0.0001) for the two settings.

CONCLUSION

This study suggests that the three metrics examined could provide early indication of performance deterioration in deployed models' performance.

摘要

目的

本研究旨在评估三种指标监测部署在儿科医院的慢性肾脏病(CKD)模型性能下降的能力。

方法

CKD 风险模型估计患者在住院后 3 至 12 个月发生 CKD 的风险。该模型基于 2014 年至 2018 年 4879 例住院患者的回顾性数据集开发,然后在 2019 年 4 月至 10 月的 1270 例住院患者中静默运行。在静默阶段使用三种指标监测其性能:(1)标准化平均差异(SMD);(2)“成员模型”的性能;(3)响应分布分析。使用 1270 例患者的观察结果来计算前瞻性模型性能和三种指标检测性能变化的能力。

结果

在前瞻性评估中,部署的模型的接收者操作特征曲线(AUROC)为 0.63,与回顾性数据的 AUROC(0.76)相比,显著降低(=0.033)。在三种指标中,SMD 在回顾性和部署数据之间有 66/75(88%)个模型输入变量显著不同(<0.05)。成员模型能够区分两种设置(AUROC=0.71,<0.0001),并且两种设置的响应分布差异显著(<0.0001)。

结论

本研究表明,所检查的三种指标可能提供部署模型性能恶化的早期迹象。

相似文献

本文引用的文献

5
Pediatric acute kidney injury: new advances in the last decade.小儿急性肾损伤:过去十年的新进展
Kidney Res Clin Pract. 2021 Mar;40(1):40-51. doi: 10.23876/j.krcp.20.074. Epub 2021 Mar 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验