Suppr超能文献

使用全自适应深度神经网络从微制造成像仪重建细胞图像。

3D Reconstruction of cellular images from microfabricated imagers using fully-adaptive deep neural networks.

机构信息

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, 94720, USA.

Department of Radiation Oncology, University of California, San Francisco, CA, 94158, USA.

出版信息

Sci Rep. 2022 May 4;12(1):7229. doi: 10.1038/s41598-022-10886-6.

Abstract

Millimeter-scale multi-cellular level imagers enable various applications, ranging from intraoperative surgical navigation to implantable sensors. However, the tradeoffs for miniaturization compromise resolution, making extracting 3D cell locations challenging-critical for tumor margin assessment and therapy monitoring. This work presents three machine-learning-based modules that extract spatial information from single image acquisitions using custom-made millimeter-scale imagers. The neural networks were trained on synthetically-generated (using Perlin noise) cell images. The first network is a convolutional neural network estimating the depth of a single layer of cells, the second is a deblurring module correcting for the point spread function (PSF). The final module extracts spatial information from a single image acquisition of a 3D specimen and reconstructs cross-sections, by providing a layered "map" of cell locations. The maximum depth error of the first module is 100 µm, with 87% test accuracy. The second module's PSF correction achieves a least-square-error of only 4%. The third module generates a binary "cell" or "no cell" per-pixel labeling with an accuracy ranging from 89% to 85%. This work demonstrates the synergy between ultra-small silicon-based imagers that enable in vivo imaging but face a trade-off in spatial resolution, and the processing power of neural networks to achieve enhancements beyond conventional linear optimization techniques.

摘要

毫米级多细胞水平成像仪可实现各种应用,从术中手术导航到可植入传感器。然而,微型化的权衡会影响分辨率,使得提取 3D 细胞位置变得具有挑战性,这对于肿瘤边缘评估和治疗监测至关重要。本工作提出了三个基于机器学习的模块,这些模块使用定制的毫米级成像仪从单个图像采集提取空间信息。神经网络是在使用 Perlin 噪声生成的合成细胞图像上进行训练的。第一个网络是一个卷积神经网络,用于估计单层细胞的深度,第二个是一个去模糊模块,用于校正点扩散函数(PSF)。最后一个模块从 3D 标本的单个图像采集提取空间信息,并通过提供细胞位置的分层“地图”来重建横截面。第一个模块的最大深度误差为 100 µm,测试准确率为 87%。第二个模块的 PSF 校正达到了仅 4%的最小二乘误差。第三个模块对每个像素进行二进制“细胞”或“无细胞”标记,准确率在 89%到 85%之间。本工作展示了超小硅基成像仪与神经网络处理能力之间的协同作用,前者可以实现体内成像,但在空间分辨率方面存在权衡,后者可以实现超越传统线性优化技术的增强。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2366/9068918/9571a7c340db/41598_2022_10886_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验