Venhuizen Freerk G, van Ginneken Bram, Liefers Bart, van Asten Freekje, Schreur Vivian, Fauser Sascha, Hoyng Carel, Theelen Thomas, Sánchez Clara I
Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, the Netherlands.
Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
Biomed Opt Express. 2018 Mar 7;9(4):1545-1569. doi: 10.1364/BOE.9.001545. eCollection 2018 Apr 1.
We developed a deep learning algorithm for the automatic segmentation and quantification of intraretinal cystoid fluid (IRC) in spectral domain optical coherence tomography (SD-OCT) volumes independent of the device used for acquisition. A cascade of neural networks was introduced to include prior information on the retinal anatomy, boosting performance significantly. The proposed algorithm approached human performance reaching an overall Dice coefficient of 0.754 ± 0.136 and an intraclass correlation coefficient of 0.936, for the task of IRC segmentation and quantification, respectively. The proposed method allows for fast quantitative IRC volume measurements that can be used to improve patient care, reduce costs, and allow fast and reliable analysis in large population studies.
我们开发了一种深度学习算法,用于在光谱域光学相干断层扫描(SD-OCT)容积中自动分割和定量视网膜内囊样液(IRC),且与用于采集的设备无关。引入了一系列神经网络以纳入视网膜解剖结构的先验信息,从而显著提高了性能。对于IRC分割和定量任务,所提出的算法接近人类水平,分别达到了0.754±0.136的总体Dice系数和0.936的组内相关系数。所提出的方法能够快速进行IRC容积的定量测量,可用于改善患者护理、降低成本,并在大规模人群研究中实现快速可靠的分析。