Tsinghua University, Department of Computer Science and Technology, Beijing, China.
Northeastern University, College of Engineering, Boston, Massachusetts, United States.
J Biomed Opt. 2019 May;24(5):1-9. doi: 10.1117/1.JBO.24.5.056003.
In conventional retinal region detection methods for optical coherence tomography (OCT) images, many parameters need to be set manually, which is often detrimental to their generalizability. We present a scheme to detect retinal regions based on fully convolutional networks (FCN) for automatic diagnosis of abnormal maculae in OCT images. The FCN model is trained on 900 labeled age-related macular degeneration (AMD), diabetic macular edema (DME) and normal (NOR) OCT images. Its segmentation accuracy is validated and its effectiveness in recognizing abnormal maculae in OCT images is tested and compared with traditional methods, by using the spatial pyramid matching based on sparse coding (ScSPM) classifier and Inception V3 classifier on two datasets: Duke dataset and our clinic dataset. In our clinic dataset, we randomly selected half of the B-scans of each class (300 AMD, 300 DME, and 300 NOR) for training classifier and the rest (300 AMD, 300 DME, and 300 NOR) for testing with 10 repetitions. Average accuracy, sensitivity, and specificity of 98.69%, 98.03%, and 99.01% are obtained by using ScSPM classifier, and those of 99.69%, 99.53%, and 99.77% are obtained by using Inception V3 classifier. These two classification algorithms achieve 100% classification accuracy when directly applied to Duke dataset, where all the 45 OCT volumes are used as test set. Finally, FCN model with or without flattening and cropping and its influence on classification performance are discussed.
在光学相干断层扫描 (OCT) 图像的传统视网膜区域检测方法中,许多参数需要手动设置,这通常不利于其通用性。我们提出了一种基于全卷积网络 (FCN) 的视网膜区域检测方案,用于自动诊断 OCT 图像中的异常黄斑。该 FCN 模型是在 900 张标注的年龄相关性黄斑变性 (AMD)、糖尿病性黄斑水肿 (DME) 和正常 (NOR) OCT 图像上进行训练的。通过在 Duke 数据集和我们的临床数据集上使用基于稀疏编码 (ScSPM) 分类器和 Inception V3 分类器的空间金字塔匹配,验证了其分割准确性,并测试了其在识别 OCT 图像中异常黄斑方面的有效性,并与传统方法进行了比较。在我们的临床数据集上,我们随机选择每个类别 (300 个 AMD、300 个 DME 和 300 个 NOR) 的一半 B 扫描进行训练分类器,其余 (300 个 AMD、300 个 DME 和 300 个 NOR) 用于测试,重复 10 次。使用 ScSPM 分类器获得的平均准确率、灵敏度和特异性分别为 98.69%、98.03%和 99.01%,使用 Inception V3 分类器获得的分别为 99.69%、99.53%和 99.77%。当直接应用于 Duke 数据集时,这两个分类算法都达到了 100%的分类准确率,其中所有 45 个 OCT 体积都用作测试集。最后,讨论了有无展平和裁剪的 FCN 模型及其对分类性能的影响。