Wang Chengcheng, Hou Bingxue, Yuan Shuxian, Zhang Qi, Cui Xumei, Wang Xintao
Shen Zhen Polytechnic Shenzhen 518055 China
Aviation Engineering Institute, Civil Aviation Flight University of China GuangHan 618037 China.
RSC Adv. 2020 Jul 20;10(45):27014-27023. doi: 10.1039/d0ra03468a. eCollection 2020 Jul 15.
Metal-nitrogen-carbon materials (Fe-N/C) have been extensively studied as one of the most excellent electrocatalysts with good catalytic activities and cheap price towards the oxygen reduction reaction (ORR). The rational design of metal-organic framework (MOF) derived carbon materials with rapid mass transport ability and good stability is a great challenge to achieve. Herein, intensive research of Fe-N/C catalysts prepared from assembling MOFs with cheap iron phthalocyanine (FePc) for the ORR is innovatively carried out. A series of Fe-N/C nano-architectures are simply synthesized by a convenient assembling method under different temperatures (800 to 1000 °C). The assembly method at high temperatures tunes the number of FeN active sites and intensifies the exposure of interior active sites. The highly dispersing Fe20-N/C electrocatalyst treated at 900 °C exhibits remarkable stability and excellent ORR activities with a half-wave potential of 0.866 V ( RHE) in alkaline solution, which is higher than that of commercial Pt/C (0.838 V RHE) under the same test conditions. X-ray photoelectron spectroscopy results illustrate that incorporated MOFs interact with the active centre of FePc, tend to enhance the electron transition and to promote the kinetics of the ORR. Overall, highly dispersed Fe-N/C MOF-based materials are excellent non-precious metal electrocatalysts for energy and environmental applications.
金属-氮-碳材料(Fe-N/C)作为一类对氧还原反应(ORR)具有良好催化活性且价格低廉的优秀电催化剂,已得到广泛研究。合理设计具有快速传质能力和良好稳定性的金属有机框架(MOF)衍生碳材料是一项极具挑战性的任务。在此,创新性地开展了对由廉价铁酞菁(FePc)与MOF组装制备的用于ORR的Fe-N/C催化剂的深入研究。通过简便的组装方法在不同温度(800至1000°C)下简单合成了一系列Fe-N/C纳米结构。高温下的组装方法调节了FeN活性位点的数量,并增强了内部活性位点的暴露。在900°C处理的高度分散的Fe₂₀-N/C电催化剂在碱性溶液中表现出卓越的稳定性和优异的ORR活性,其半波电位为0.866 V(相对于可逆氢电极,RHE),高于相同测试条件下商业Pt/C的半波电位(0.838 V RHE)。X射线光电子能谱结果表明,引入的MOF与FePc的活性中心相互作用,倾向于增强电子转移并促进ORR的动力学。总体而言,高度分散的基于Fe-N/C MOF的材料是用于能源和环境应用的优异非贵金属电催化剂。