Suppr超能文献

竞争相GeSe和二维层状材料GeSe2的合成。

The synthesis of competing phase GeSe and GeSe 2D layered materials.

作者信息

Yumigeta Kentaro, Brayfield Cassondra, Cai Hui, Hajra Debarati, Blei Mark, Yang Sijie, Shen Yuxia, Tongay S

机构信息

Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University Tempe AZ 85287 USA

出版信息

RSC Adv. 2020 Oct 16;10(63):38227-38232. doi: 10.1039/d0ra07539f. eCollection 2020 Oct 15.

Abstract

We demonstrate the synthesis of layered anisotropic semiconductor GeSe and GeSe nanomaterials through low temperature (∼400 °C) and atmospheric pressure chemical vapor deposition using halide based precursors. Results show that GeI and HSe precursors successfully react in the gas-phase and nucleate on a variety of target substrates including sapphire, Ge, GaAs, or HOPG. Layer-by-layer growth takes place after nucleation to form layered anisotropic materials. Detailed SEM, EDS, XRD, and Raman spectroscopy measurements together with systematic CVD studies reveal that the substrate temperature, selenium partial pressure, and the substrate type ultimately dictate the resulting stoichiometry and phase of these materials. Results from this work introduce the phase control of Ge and Se based nanomaterials (GeSe and GeSe) using halide based CVD precursors at ATM pressures and low temperatures. Overall findings also extend our fundamental understanding of their growth by making the first attempt to correlate growth parameters to resulting competing phases of Ge-Se based materials.

摘要

我们展示了通过低温(约400°C)和大气压化学气相沉积法,使用卤化物基前驱体合成层状各向异性半导体GeSe和GeSe纳米材料。结果表明,GeI和HSe前驱体在气相中成功反应,并在包括蓝宝石、Ge、GaAs或HOPG在内的各种目标衬底上成核。成核后逐层生长,形成层状各向异性材料。详细的扫描电子显微镜(SEM)、能谱仪(EDS)、X射线衍射(XRD)和拉曼光谱测量以及系统的化学气相沉积(CVD)研究表明,衬底温度、硒分压和衬底类型最终决定了这些材料的化学计量比和相。这项工作的结果介绍了在大气压和低温下使用卤化物基CVD前驱体对基于Ge和Se的纳米材料(GeSe和GeSe)进行相控制。总体研究结果还通过首次尝试将生长参数与基于Ge-Se的材料的竞争相联系起来,扩展了我们对其生长的基本理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/460e/9057377/8bdc800a6869/d0ra07539f-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验