Suppr超能文献

糖尿病足溃疡伤口愈合的光生物调节疗法优化及…… (原文结尾不完整)

Optimization of photo-biomodulation therapy for wound healing of diabetic foot ulcers and .

作者信息

Chen Qianqian, Yang Jichun, Yin Huijuan, Li Yingxin, Qiu Haixia, Gu Ying, Yang Hua, Xiaoxi Dong, Xiafei Shi, Che Bochen, Li Hongxiao

机构信息

Laboratory of Laser Medicine, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300192, China.

National Research Center for Rehabilitation Technical Aids, Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil Affairs, Beijing 100176, China.

出版信息

Biomed Opt Express. 2022 Mar 25;13(4):2450-2466. doi: 10.1364/BOE.451135. eCollection 2022 Apr 1.

Abstract

Unclear optical parameters make photo-biomodulation (PBM) difficult to implement in diabetic foot ulcer (DFU) clinically. Here, 12 wavelengths (400-900 nm) were used to conduct PBM to heal DFU wounds in vitro and in vivo. PBM at 10 mW/cm and 0.5-4 J/cm with all 12 wavelengths promoted proliferation of diabetic wound cells. In a mimic DFU (mDFU) rat model, PBM (425, 630, 730, and 850 nm, and a combination light strategy) promoted mDFU healing. The positive cell proliferation, re-epithelialization, angiogenesis, collagen synthesis, and inflammation were possible mechanisms. The combination strategy had the best effect, which can be applied clinically.

摘要

不明确的光学参数使得光生物调节(PBM)在临床上难以应用于糖尿病足溃疡(DFU)。在此,使用12种波长(400 - 900 nm)进行PBM以在体外和体内促进DFU伤口愈合。所有12种波长在10 mW/cm和0.5 - 4 J/cm条件下的PBM均促进了糖尿病伤口细胞的增殖。在模拟DFU(mDFU)大鼠模型中,PBM(425、630、730和850 nm,以及联合光策略)促进了mDFU愈合。细胞增殖、再上皮化、血管生成、胶原蛋白合成及炎症反应呈阳性可能是其机制。联合策略效果最佳,可应用于临床。

相似文献

1
Optimization of photo-biomodulation therapy for wound healing of diabetic foot ulcers and .
Biomed Opt Express. 2022 Mar 25;13(4):2450-2466. doi: 10.1364/BOE.451135. eCollection 2022 Apr 1.
2
Evaluation of fluorescence biomodulation in the real-life management of chronic wounds: the EUREKA trial.
J Wound Care. 2018 Nov 2;27(11):744-753. doi: 10.12968/jowc.2018.27.11.744.
3
EUREKA study - the evaluation of real-life use of a biophotonic system in chronic wound management: an interim analysis.
Drug Des Devel Ther. 2017 Dec 11;11:3551-3558. doi: 10.2147/DDDT.S142580. eCollection 2017.
5
Impact of Photobiomodulation and Condition Medium on Mast Cell Counts, Degranulation, and Wound Strength in Infected Skin Wound Healing of Diabetic Rats.
Photobiomodul Photomed Laser Surg. 2019 Nov;37(11):706-714. doi: 10.1089/photob.2019.4691. Epub 2019 Oct 7.
6
[Mechanisms of adrenergic β-antagonist for wounds and its application prospect in diabetic foot ulcers].
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2020 Dec 15;34(12):1630-1634. doi: 10.7507/1002-1892.202002063.
7
The Effects of Blue Light on Human Fibroblasts and Diabetic Wound Healing.
Life (Basel). 2022 Sep 14;12(9):1431. doi: 10.3390/life12091431.
8
High-dose folic acid and its effect on early stage diabetic foot ulcer wound healing.
Wound Repair Regen. 2020 Jul;28(4):517-525. doi: 10.1111/wrr.12804. Epub 2020 Mar 30.
9
Combined effects of metformin and photobiomodulation improve the proliferation phase of wound healing in type 2 diabetic rats.
Biomed Pharmacother. 2020 Mar;123:109776. doi: 10.1016/j.biopha.2019.109776. Epub 2020 Jan 3.
10
Photobiomodulation and diabetic foot and lower leg ulcer healing: A narrative synthesis.
Foot (Edinb). 2021 Sep;48:101847. doi: 10.1016/j.foot.2021.101847. Epub 2021 Jul 9.

引用本文的文献

1
Photobiomodulation studies on diabetic wound healing: An insight into the inflammatory pathway in diabetic wound healing.
Wound Repair Regen. 2025 Jan-Feb;33(1):e13239. doi: 10.1111/wrr.13239. Epub 2024 Nov 28.
3
Volumetric segmentation of biological cells and subcellular structures for optical diffraction tomography images.
Biomed Opt Express. 2023 Sep 5;14(10):5022-5035. doi: 10.1364/BOE.498275. eCollection 2023 Oct 1.
4
Photobiomodulation and Wound Healing: Low-Level Laser Therapy at 661 nm in a Scratch Assay Keratinocyte Model.
Ann Biomed Eng. 2024 Feb;52(2):376-385. doi: 10.1007/s10439-023-03384-x. Epub 2023 Oct 18.
6
Updates on Recent Clinical Assessment of Commercial Chronic Wound Care Products.
Adv Healthc Mater. 2023 Oct;12(25):e2300556. doi: 10.1002/adhm.202300556. Epub 2023 Jul 23.
7
Biological Cells as Natural Biophotonic Devices: Fundamental and Applications-introduction to the feature issue.
Biomed Opt Express. 2022 Sep 30;13(10):5571-5573. doi: 10.1364/BOE.475704. eCollection 2022 Oct 1.

本文引用的文献

2
Does blue light restore human epidermal barrier function via activation of Opsin during cutaneous wound healing?
Lasers Surg Med. 2019 Apr;51(4):370-382. doi: 10.1002/lsm.23015. Epub 2018 Aug 31.
4
Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation.
Photochem Photobiol. 2018 Mar;94(2):199-212. doi: 10.1111/php.12864. Epub 2018 Jan 19.
8
Chronic Wound Healing: A Review of Current Management and Treatments.
Adv Ther. 2017 Mar;34(3):599-610. doi: 10.1007/s12325-017-0478-y. Epub 2017 Jan 21.
9
Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy.
IEEE J Sel Top Quantum Electron. 2016 May-Jun;22(3). doi: 10.1109/JSTQE.2016.2561201.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验