Grau E Noseda, Román G, Compañy A Díaz, Brizuela G, Juan A, Simonetti S
Instituto de Física del Sur (IFISUR), Departamento de Física, Universidad Nacional del Sur (UNS), CONICET Av. L. N. Alem 1253 B8000CPB - Bahía Blanca Argentina
Comisión de Investigaciones Científicas (CIC) Calle 526 e/10 y 11 1900 - La Plata Argentina.
RSC Adv. 2019 Feb 5;9(8):4415-4421. doi: 10.1039/c8ra08792j. eCollection 2019 Jan 30.
Theoretical calculations are performed using the Vienna Ab-initio simulation package (VASP) to understand the mechanisms that control the adsorption of Ampyra drug on the different crystallographic planes of β-cristobalite: the hydroxylated (111) and (100) surfaces. The Ampyra-silica interaction is most favored on the (100) surface where the entire ring of the molecule interacts with the surface while on the (111) face, lesser exchange and fewer non-polar atoms are involved. Calculations show that the interactions mainly occur at the interface between the Ampyra and the closest silanol groups, according to the formation of the H-bonding interactions. The results indicate that the H-bonds have an important influence on the adsorption of the Ampyra. In consequence, adsorption on the (111) surface is observed to a lesser extent than on the (100) surface according the smaller hydroxyl density.
使用维也纳从头算模拟包(VASP)进行理论计算,以了解控制氨吡啶药物在β-方石英不同晶面上吸附的机制:羟基化的(111)和(100)表面。氨吡啶与二氧化硅的相互作用在(100)表面上最为有利,在该表面上分子的整个环与表面相互作用,而在(111)面上,参与的交换较少且非极性原子较少。计算表明,根据氢键相互作用的形成,相互作用主要发生在氨吡啶与最接近的硅醇基团之间的界面处。结果表明,氢键对氨吡啶的吸附有重要影响。因此,根据较小的羟基密度,观察到在(111)表面上的吸附程度低于在(100)表面上的吸附程度。