Li Yan, Ji Yaxin, Zhao Yingjie, Chen Junxiang, Zheng Sixing, Sang Xiahan, Yang Bin, Li Zhongjian, Lei Lecheng, Wen Zhenhai, Feng Xinliang, Hou Yang
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.
Adv Mater. 2022 Jul;34(28):e2202240. doi: 10.1002/adma.202202240. Epub 2022 Jun 6.
The electrochemical nitrogen reduction reaction (e-NRR) is envisaged as alternative technique to the Haber-Bosch process for NH synthesis. However, how to develop highly active e-NRR catalysts faces daunting challenges. Herein, a viable strategy to manipulate local spin state of isolated iron sites through S-coordinated doping (Fe -NSC) is reported. Incorporation of S in the coordination of Fe -NSC can induce the transition of spin-polarization configuration with the formation of a medium-spin-state of Fe (t 6 e 1), which is beneficial for facilitating e electrons to penetrate the antibonding π-orbital of nitrogen. As a consequence, a record-high current density up to 10 mA cm can be achieved, together with a high NH selectivity of ≈10% in a flow cell reactor. Both experimental and theoretical analyses indicate that the monovalent Fe(I) atomic center in the Fe -NSC after the S doping accelerates the N activation and protonation in the rate-determining step of *N to *NNH.
电化学氮还原反应(e-NRR)被设想为替代哈伯-博施法合成氨的技术。然而,如何开发高活性的e-NRR催化剂面临着艰巨的挑战。在此,报道了一种通过S配位掺杂(Fe-NSC)来操纵孤立铁位点局部自旋态的可行策略。在Fe-NSC的配位中引入S可以诱导自旋极化构型的转变,形成Fe的中自旋态(t6e1),这有利于促进e电子穿透氮的反键π轨道。结果,在流动池反应器中可以实现高达10 mA cm的创纪录高电流密度,以及约10%的高NH选择性。实验和理论分析均表明,S掺杂后Fe-NSC中的一价Fe(I)原子中心在N到NNH的速率决定步骤中加速了N的活化和质子化。