Suppr超能文献

层次化摊销 GAN 用于三维高分辨率医学图像合成。

Hierarchical Amortized GAN for 3D High Resolution Medical Image Synthesis.

出版信息

IEEE J Biomed Health Inform. 2022 Aug;26(8):3966-3975. doi: 10.1109/JBHI.2022.3172976. Epub 2022 Aug 11.

Abstract

Generative Adversarial Networks (GAN) have many potential medical imaging applications, including data augmentation, domain adaptation, and model explanation. Due to the limited memory of Graphical Processing Units (GPUs), most current 3D GAN models are trained on low-resolution medical images, these models either cannot scale to high-resolution or are prone to patchy artifacts. In this work, we propose a novel end-to-end GAN architecture that can generate high-resolution 3D images. We achieve this goal by using different configurations between training and inference. During training, we adopt a hierarchical structure that simultaneously generates a low-resolution version of the image and a randomly selected sub-volume of the high-resolution image. The hierarchical design has two advantages: First, the memory demand for training on high-resolution images is amortized among sub-volumes. Furthermore, anchoring the high-resolution sub-volumes to a single low-resolution image ensures anatomical consistency between sub-volumes. During inference, our model can directly generate full high-resolution images. We also incorporate an encoder with a similar hierarchical structure into the model to extract features from the images. Experiments on 3D thorax CT and brain MRI demonstrate that our approach outperforms state of the art in image generation. We also demonstrate clinical applications of the proposed model in data augmentation and clinical-relevant feature extraction.

摘要

生成对抗网络 (GAN) 在医学影像中有许多潜在的应用,包括数据增强、域适应和模型解释。由于图形处理单元 (GPU) 的内存有限,目前大多数 3D GAN 模型都是在低分辨率医学图像上训练的,这些模型要么无法扩展到高分辨率,要么容易出现块状伪影。在这项工作中,我们提出了一种新颖的端到端 GAN 架构,可以生成高分辨率的 3D 图像。我们通过在训练和推断之间使用不同的配置来实现这一目标。在训练期间,我们采用了一种分层结构,同时生成图像的低分辨率版本和高分辨率图像的随机选择的子体积。分层设计有两个优点:首先,在高分辨率图像上的训练的内存需求在子体积之间分摊。此外,将高分辨率子体积锚定到单个低分辨率图像上可以确保子体积之间的解剖一致性。在推断期间,我们的模型可以直接生成全高分辨率图像。我们还将具有类似分层结构的编码器纳入模型中,以从图像中提取特征。在 3D 胸部 CT 和脑 MRI 上的实验表明,我们的方法在图像生成方面优于最新技术。我们还展示了所提出模型在数据增强和临床相关特征提取方面的临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1024/9413516/24016ecb0e29/nihms-1829650-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验