Suppr超能文献

心搏骤停后患者阴离子间隙与住院死亡率的关系:一项回顾性研究。

The association between anion gap and in-hospital mortality of post-cardiac arrest patients: a retrospective study.

机构信息

The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang, China.

Department of Intensive Care Unit, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.

出版信息

Sci Rep. 2022 May 6;12(1):7405. doi: 10.1038/s41598-022-11081-3.

Abstract

We aimed to determine the association between anion gap and in-hospital mortality in post-cardiac arrest (CA) patients. Extracted the data of patients diagnosed with CA from MIMIC-IV database. Generalized additive model (GAM), Cox regression and Kaplan-Meier survival analysis were used to demonstrate the association between AG levels and in-hospital mortality. ROC curve analysis for assessing the discrimination of AG for predicting in-hospital mortality. Totally, 1724 eligible subjects were included in our study finally. 936 patients (551 males and 385 females) died in hospital, with the prevalence of in-hospital mortality was 54.3%. The result of the Kaplan-Meier analysis showed that the higher value of AG had significant lower survival possibility during the hospitalization compared with the lower-value of AG patients. In the crude Cox regression model, high-level of AG subjects was associated with significant higher HR compared with low-level of AG subjects. After adjusted the vital signs data, laboratory data, and treatment, high-level of AG (group Q3 and group Q4) were also associated with increased risk of in-hospital mortality compared with low-level of AG group, 1.52 (95% Cl 1.17-1.85; P < 0.001), 1.64 (95% Cl 1.21-2.08; P < 0.001), respectively. The ROC curve indicated that AG has acceptable discrimination for predicting in-hospital mortality. The AUC value was found to be 0.671 (95% CI 0.646-0.698). Higher AG levels was associated with poor prognosis in post-CA patients. AG is a predictor for predicting in-hospital mortality of CA, and could help refine risk stratification.

摘要

我们旨在确定阴离子间隙与心脏骤停(CA)后患者住院死亡率之间的关系。从 MIMIC-IV 数据库中提取诊断为 CA 的患者数据。使用广义加性模型(GAM)、Cox 回归和 Kaplan-Meier 生存分析来证明 AG 水平与住院死亡率之间的关联。ROC 曲线分析评估 AG 预测住院死亡率的鉴别能力。最终,我们共纳入 1724 名符合条件的患者。936 名患者(551 名男性和 385 名女性)在医院死亡,住院死亡率为 54.3%。Kaplan-Meier 分析结果表明,AG 值较高的患者在住院期间的生存可能性明显低于 AG 值较低的患者。在未经调整的 Cox 回归模型中,高水平 AG 组与低水平 AG 组相比,HR 显著更高。在调整生命体征数据、实验室数据和治疗后,高水平 AG(Q3 组和 Q4 组)与低水平 AG 组相比,住院死亡率的风险也显著增加,HR 为 1.52(95%CI 1.17-1.85;P<0.001)和 1.64(95%CI 1.21-2.08;P<0.001)。ROC 曲线表明,AG 对预测住院死亡率具有可接受的鉴别能力。AUC 值为 0.671(95%CI 0.646-0.698)。AG 水平较高与 CA 后患者的预后不良相关。AG 是预测 CA 住院死亡率的指标,有助于细化风险分层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30e9/9076652/e8a01a71408e/41598_2022_11081_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验