文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Synthesis and compatibility evaluation of versatile mesoporous silica nanoparticles with red blood cells: an overview.

作者信息

Mukhopadhyay Subhankar, Veroniaina Hanitrarimalala, Chimombe Tadious, Han Lidong, Zhenghong Wu, Xiaole Qi

机构信息

Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University Nanjing 210009 PR China

出版信息

RSC Adv. 2019 Nov 1;9(61):35566-35578. doi: 10.1039/c9ra06127d. eCollection 2019 Oct 31.


DOI:10.1039/c9ra06127d
PMID:35528069
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9074774/
Abstract

Protean mesoporous silica nanoparticles (MSNs) are propitious candidates over decades for nanoscale drug delivery systems due to their unique characteristics, including (but not limited to) changeable pore size, mesoporosity, high drug loading capacity, and biodegradability. MSNs have been drawing considerable attention as competent, safer and effective drug delivery vehicles day by day by their towering mechanical, chemical and thermal characteristics. Straightforward and easy steps are involved in the synthesis of MSNs at a relatively cheaper cost. This review reports Stober's synthesis, the first proposed synthesis procedure to prepare micron-sized, spherical MSNs, followed by other modifications later on done by scientists. To ensure the safety and compatibility of MSNs with biological systems, the hemocompatibility evaluation of MSNs using human red blood cells (RBCs) is a widely welcomed exercise. Though our main vision of this overview is to emphasize more on the hemocompatibility of MSNs to RBCs, we also brief about the synthesis and widespread applications of multifaceted MSNs. The strike of different parameters of MSNs plays a crucial role concerning the hemolytic activity of MSNs, which also has been discussed here. The inference is derived by centering some feasible measures that can be adopted to cut down or stop the hemolytic activity of MSNs in the future.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b57/9074774/3f991e8486d0/c9ra06127d-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b57/9074774/f3634285106d/c9ra06127d-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b57/9074774/77cfaa5d3bff/c9ra06127d-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b57/9074774/6953a6f66351/c9ra06127d-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b57/9074774/a7d4d6d44d63/c9ra06127d-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b57/9074774/8a908e52b744/c9ra06127d-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b57/9074774/149b78314975/c9ra06127d-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b57/9074774/3f991e8486d0/c9ra06127d-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b57/9074774/f3634285106d/c9ra06127d-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b57/9074774/77cfaa5d3bff/c9ra06127d-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b57/9074774/6953a6f66351/c9ra06127d-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b57/9074774/a7d4d6d44d63/c9ra06127d-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b57/9074774/8a908e52b744/c9ra06127d-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b57/9074774/149b78314975/c9ra06127d-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b57/9074774/3f991e8486d0/c9ra06127d-f7.jpg

相似文献

[1]
Synthesis and compatibility evaluation of versatile mesoporous silica nanoparticles with red blood cells: an overview.

RSC Adv. 2019-11-1

[2]
Mesoporous Silica Nanoparticles: A Comprehensive Review on Synthesis and Recent Advances.

Pharmaceutics. 2018-8-6

[3]
Mesoporous silica nanoparticles for therapeutic/diagnostic applications.

Biomed Pharmacother. 2018-11-6

[4]
Impact of shape and pore size of mesoporous silica nanoparticles on serum protein adsorption and RBCs hemolysis.

ACS Appl Mater Interfaces. 2014-2-7

[5]
Mesoporous silica nanoparticles: synthesis, classification, drug loading, pharmacokinetics, biocompatibility, and application in drug delivery.

Expert Opin Drug Deliv. 2019-2-7

[6]
Mesoporous silica nanoparticles: facile surface functionalization and versatile biomedical applications in oncology.

Acta Biomater. 2020-10-15

[7]
Recent Developments in Mesoporous Silica Nanoparticles for Tumor Theranostic Applications.

Curr Pharm Des. 2022

[8]
A Review on Recent Technologies and Patents on Silica Nanoparticles for Cancer Treatment and Diagnosis.

Recent Pat Drug Deliv Formul. 2020

[9]
Mesoporous Silica Nanoparticles as Carriers for Biomolecules in Cancer Therapy.

Adv Exp Med Biol. 2021

[10]
Mesoporous silica nanoparticles for tissue-engineering applications.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019-7-11

引用本文的文献

[1]
Enzyme-instructed self-assembled supramolecular bi-antibodies for inhibition and imaging of atherosclerosis progression.

Mater Today Bio. 2025-5-1

[2]
Preclinical Toxicological Characterization of Porphyrin-Doped Conjugated Polymer Nanoparticles for Photodynamic Therapy.

Pharmaceutics. 2025-5-1

[3]
5-Fluorouracil in Combination with Calcium Carbonate Nanoparticles Loaded with Antioxidant Thymoquinone against Colon Cancer: Synergistically Therapeutic Potential and Underlying Molecular Mechanism.

Antioxidants (Basel). 2024-8-25

[4]
Novel gene therapy for drug-resistant melanoma: Synergistic combination of PTEN plasmid and BRD4 PROTAC-loaded lipid nanocarriers.

Mol Ther Nucleic Acids. 2024-7-31

[5]
MRI Directed Magnevist Effective to Study Toxicity of Gd-Doped Mesoporous Carbon Nanoparticles in Mice Model.

Int J Nanomedicine. 2023

[6]
β-tricalcium phosphate synthesized in organic medium for controlled release drug delivery application in bio-scaffolds.

RSC Adv. 2023-9-5

[7]
Mackinawite nanozymes as reactive oxygen species scavengers for acute kidney injury alleviation.

J Nanobiotechnology. 2023-8-19

[8]
Effect of Non-Modified as Well as Surface-Modified SiO Nanoparticles on Red Blood Cells, Biological and Model Membranes.

Int J Mol Sci. 2023-7-21

[9]
Application of non-metal nanoparticles, as a novel approach, for improving the stability of blood products: 2011-2021.

Prog Biomater. 2022-6

[10]
Galactose-decorated liver tumor-specific nanoliposomes incorporating selective BRD4-targeted PROTAC for hepatocellular carcinoma therapy.

Heliyon. 2022-1-3

本文引用的文献

[1]
Large Pore Mesoporous Silica and Organosilica Nanoparticles for Pepstatin A Delivery in Breast Cancer Cells.

Molecules. 2019-1-17

[2]
Mesoporous Silica Nanoparticles: A Comprehensive Review on Synthesis and Recent Advances.

Pharmaceutics. 2018-8-6

[3]
Blood-Contacting Biomaterials: Evaluation of the Hemocompatibility.

Front Bioeng Biotechnol. 2018-7-16

[4]
Biocompatibility assessment of silk nanoparticles: hemocompatibility and internalization by human blood cells.

Nanomedicine. 2017-7-27

[5]
Influence of direct or indirect contact for the cytotoxicity and blood compatibility of spider silk.

J Mater Sci Mater Med. 2017-8

[6]
Use of microfluidics to assess the platelet-based control of coagulation.

Platelets. 2017-7

[7]
Preparation of chitosan/mesoporous silica nanoparticle composite hydrogels for sustained co-delivery of biomacromolecules and small chemical drugs.

Sci Technol Adv Mater. 2013-7-23

[8]
Fabrication of colloidal crystals composed of pore-expanded mesoporous silica nanoparticles prepared by a controlled growth method.

Nanoscale. 2017-2-16

[9]
Multifunctional mesoporous silica nanoparticles modified with tumor-shedable hyaluronic acid as carriers for doxorubicin.

Colloids Surf B Biointerfaces. 2016-8-1

[10]
In vitro hemocompatibility testing: The importance of fresh blood.

Biointerphases. 2016-6-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索