Suppr超能文献

用于多站点儿科脑磁共振图像分割的多尺度自监督学习,含运动/吉布斯伪影

Multi-Scale Self-Supervised Learning for Multi-Site Pediatric Brain MR Image Segmentation with Motion/Gibbs Artifacts.

作者信息

Sun Yue, Gao Kun, Lin Weili, Li Gang, Niu Sijie, Wang Li

机构信息

Department of Shandong Provincial Key Laboratory of Network based Intelligent Computing, University of Jinan, Jinan 250022, China.

Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, USA.

出版信息

Mach Learn Med Imaging. 2021 Sep;12966:171-179. doi: 10.1007/978-3-030-87589-3_18. Epub 2021 Sep 21.

Abstract

Accurate tissue segmentation of large-scale pediatric brain MR images from multiple sites is essential to characterize early brain development. Due to imaging motion/Gibbs artifacts and multi-site issue (or domain shift issue), it remains a challenge to accurately segment brain tissues from multi-site pediatric MR images. In this paper, we present a multi-scale self-supervised learning (M-SSL) framework to accurately segment tissues for multi-site pediatric brain MR images with artifacts. Specifically, we first work on the downsampled images to estimate coarse tissue probabilities and build a global anatomic guidance. We then train another segmentation model based on the original images to estimate fine tissue probabilities, which are further integrated with the global anatomic guidance to refine the segmentation results. In the testing stage, to alleviate the multi-site issue, we propose an iterative self-supervised learning strategy to train a segmentation model based on a set of reliable training samples automatically generated for a to-be-segmented site. The experimental results on pediatric brain MR images with real artifacts and multi-site subjects from the iSeg2019 challenge demonstrate that our M-SSL method achieves better performance compared with several state-of-the-art methods.

摘要

准确分割来自多个站点的大规模儿科脑磁共振图像中的组织对于表征早期脑发育至关重要。由于成像运动/吉布斯伪影以及多站点问题(或域偏移问题),从多站点儿科磁共振图像中准确分割脑组织仍然是一项挑战。在本文中,我们提出了一种多尺度自监督学习(M-SSL)框架,用于准确分割具有伪影的多站点儿科脑磁共振图像中的组织。具体而言,我们首先对下采样图像进行处理,以估计粗略的组织概率并构建全局解剖学指导。然后,我们基于原始图像训练另一个分割模型,以估计精细的组织概率,这些概率进一步与全局解剖学指导相结合,以细化分割结果。在测试阶段,为了缓解多站点问题,我们提出了一种迭代自监督学习策略,基于为待分割站点自动生成的一组可靠训练样本训练一个分割模型。来自iSeg2019挑战赛的具有真实伪影的儿科脑磁共振图像和多站点受试者的实验结果表明,与几种先进方法相比,我们的M-SSL方法具有更好的性能。

相似文献

3
MC -Net: motion correction network for multi-contrast brain MRI.MC-Net:用于多对比度脑 MRI 的运动校正网络。
Magn Reson Med. 2021 Aug;86(2):1077-1092. doi: 10.1002/mrm.28719. Epub 2021 Mar 15.
5
A Deep Spatial Context Guided Framework for Infant Brain Subcortical Segmentation.一种用于婴儿脑皮质下分割的深度空间上下文引导框架。
Med Image Comput Comput Assist Interv. 2020 Oct;12267:646-656. doi: 10.1007/978-3-030-59728-3_63. Epub 2020 Sep 29.

本文引用的文献

1
Semi-supervised Transfer Learning for Infant Cerebellum Tissue Segmentation.用于婴儿小脑组织分割的半监督迁移学习
Mach Learn Med Imaging. 2020 Oct;12436:663-673. doi: 10.1007/978-3-030-59861-7_67. Epub 2020 Sep 29.
2
Multi-Site Infant Brain Segmentation Algorithms: The iSeg-2019 Challenge.多站点婴儿脑分割算法:iSeg-2019 挑战赛。
IEEE Trans Med Imaging. 2021 May;40(5):1363-1376. doi: 10.1109/TMI.2021.3055428. Epub 2021 Apr 30.
3
UNet++: A Nested U-Net Architecture for Medical Image Segmentation.U-Net++:一种用于医学图像分割的嵌套U-Net架构。
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018 Sep;11045:3-11. doi: 10.1007/978-3-030-00889-5_1. Epub 2018 Sep 20.
9
volBrain: An Online MRI Brain Volumetry System.volBrain:一个在线磁共振成像脑容积测量系统。
Front Neuroinform. 2016 Jul 27;10:30. doi: 10.3389/fninf.2016.00030. eCollection 2016.
10
The minimal preprocessing pipelines for the Human Connectome Project.人类连接组计划的最小预处理管道。
Neuroimage. 2013 Oct 15;80:105-24. doi: 10.1016/j.neuroimage.2013.04.127. Epub 2013 May 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验