Suppr超能文献

基于网络子图的分析和比较分子网络的方法。

Network subgraph-based approach for analyzing and comparing molecular networks.

机构信息

Department of Computer Science and Information Engineering, National Formosa University, Yun-Lin, Taiwan.

National Research and Innovation Agency, Bandung, Jawa Barat, Republic of Indonesia.

出版信息

PeerJ. 2022 May 3;10:e13137. doi: 10.7717/peerj.13137. eCollection 2022.

Abstract

Molecular networks are built up from genetic elements that exhibit feedback interactions. Here, we studied the problem of measuring the similarity of directed networks by proposing a novel alignment-free approach: the network subgraph-based approach. Our approach does not make use of randomized networks to determine modular patterns embedded in a network, and this method differs from the network motif and graphlet methods. Network similarity was quantified by gauging the difference between the subgraph frequency distributions of two networks using Jensen-Shannon entropy. We applied the subgraph approach to study three types of molecular networks, , cancer networks, signal transduction networks, and cellular process networks, which exhibit diverse molecular functions. We compared the performance of our subgraph detection algorithm with other algorithms, and the results were consistent, but other algorithms could not address the issue of subgraphs/motifs embedded within a subgraph/motif. To evaluate the effectiveness of the subgraph-based method, we applied the method along with the Jensen-Shannon entropy to classify six network models, and it achieves a 100% accuracy of classification. The proposed information-theoretic approach allows us to determine the structural similarity of two networks regardless of node identity and network size. We demonstrated the effectiveness of the subgraph approach to cluster molecular networks that exhibit similar regulatory interaction topologies. As an illustration, our method can identify (i) common subgraph-mediated signal transduction and/or cellular processes in AML and pancreatic cancer, and (ii) scaffold proteins in gastric cancer and hepatocellular carcinoma; thus, the results suggested that there are common regulation modules for cancer formation. We also found that the underlying substructures of the molecular networks are dominated by irreducible subgraphs; this feature is valid for the three classes of molecular networks we studied. The subgraph-based approach provides a systematic scenario for analyzing, compare and classifying molecular networks with diverse functionalities.

摘要

分子网络是由具有反馈相互作用的遗传元件构建的。在这里,我们通过提出一种新的无向网络相似性度量方法,即基于网络子图的方法,来研究有向网络相似性的度量问题。我们的方法不使用随机网络来确定网络中嵌入的模块化模式,这与网络基元和图元方法不同。通过测量两个网络的子图频率分布之间的差异,使用 Jensen-Shannon 熵来量化网络的相似性。我们应用子图方法研究了三种类型的分子网络,代谢网络、癌症网络、信号转导网络和细胞过程网络,它们表现出不同的分子功能。我们将子图检测算法的性能与其他算法进行了比较,结果是一致的,但其他算法无法解决嵌入在子图/基元中的子图/基元的问题。为了评估基于子图的方法的有效性,我们将该方法与 Jensen-Shannon 熵一起应用于对六种网络模型进行分类,其分类准确率达到了 100%。所提出的信息论方法允许我们确定两个网络的结构相似性,而不考虑节点身份和网络大小。我们证明了子图方法在聚类具有相似调节相互作用拓扑的分子网络方面的有效性。例如,我们的方法可以识别 AML 和胰腺癌中常见的子图介导的信号转导和/或细胞过程,以及胃癌和肝细胞癌中的支架蛋白;因此,结果表明癌症形成存在共同的调节模块。我们还发现,分子网络的基本子结构主要由不可约子图组成;这一特征对于我们研究的三类分子网络都是有效的。基于子图的方法为分析、比较和分类具有不同功能的分子网络提供了一个系统的方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d78e/9074881/6d9721547fda/peerj-10-13137-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验