Suppr超能文献

对人类磷酸化蛋白质组进行分析以评估蛋白质磷酸化的真实程度。

Profiling the Human Phosphoproteome to Estimate the True Extent of Protein Phosphorylation.

机构信息

Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, U.K.

Computational Biology Facility, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, U.K.

出版信息

J Proteome Res. 2022 Jun 3;21(6):1510-1524. doi: 10.1021/acs.jproteome.2c00131. Epub 2022 May 9.

Abstract

Public phosphorylation databases such as PhosphoSitePlus (PSP) and PeptideAtlas (PA) compile results from published papers or openly available mass spectrometry (MS) data. However, there is no database-level control for false discovery of sites, likely leading to the overestimation of true phosphosites. By profiling the human phosphoproteome, we estimate the false discovery rate (FDR) of phosphosites and predict a more realistic count of true identifications. We rank sites into phosphorylation likelihood sets and analyze them in terms of conservation across 100 species, sequence properties, and functional annotations. We demonstrate significant differences between the sets and develop a method for independent phosphosite FDR estimation. Remarkably, we report estimated FDRs of 84, 98, and 82% within sets of phosphoserine (pSer), phosphothreonine (pThr), and phosphotyrosine (pTyr) sites, respectively, that are supported by only a single piece of identification evidence─the majority of sites in PSP. We estimate that around 62 000 Ser, 8000 Thr, and 12 000 Tyr phosphosites in the human proteome are likely to be true, which is lower than most published estimates. Furthermore, our analysis estimates that 86 000 Ser, 50 000 Thr, and 26 000 Tyr phosphosites are likely false-positive identifications, highlighting the significant potential of false-positive data to be present in phosphorylation databases.

摘要

公共磷酸化数据库,如 PhosphoSitePlus(PSP)和 PeptideAtlas(PA),汇编来自已发表论文或公开可用的质谱(MS)数据的结果。然而,这些数据库并没有针对假阳性磷酸化位点的控制机制,这可能导致真正磷酸化位点的高估。通过对人类磷酸化组进行分析,我们估计了磷酸化位点的假发现率(FDR),并预测了更真实的真实鉴定数量。我们将位点分为磷酸化可能性集,并从 100 种物种的保守性、序列特性和功能注释等方面对其进行分析。我们发现这些集合之间存在显著差异,并开发了一种独立的磷酸化位点 FDR 估计方法。值得注意的是,我们报告了在磷酸丝氨酸(pSer)、磷酸苏氨酸(pThr)和磷酸酪氨酸(pTyr)位点集合中,分别有 84%、98%和 82%的位点的估计 FDR,这些集合仅支持单一鉴定证据——PSP 中的大多数位点。我们估计,在人类蛋白质组中,大约有 62000 个丝氨酸、8000 个苏氨酸和 12000 个酪氨酸磷酸化位点可能是真实的,这低于大多数已发表的估计。此外,我们的分析估计,有 86000 个丝氨酸、50000 个苏氨酸和 26000 个酪氨酸磷酸化位点可能是假阳性鉴定,这突出了假阳性数据在磷酸化数据库中存在的巨大潜在风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14c0/9171898/e1a56c26c2b7/pr2c00131_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验