Suppr超能文献

三价铁和一氧化氮的协同作用驱动了甲烷的厌氧氧化。

The synergy of Fe(III) and NO drives the anaerobic oxidation of methane.

机构信息

Key Laboratory of Environmental Exposure and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China.

Key Laboratory of Environmental Exposure and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China.

出版信息

Sci Total Environ. 2022 Sep 1;837:155766. doi: 10.1016/j.scitotenv.2022.155766. Epub 2022 May 6.

Abstract

The anaerobic oxidation of methane (AOM) driven by NO or Fe(III) alone was limited by slow electron delivery and ineffective enrichment of microbes. The flexible coupling between Fe(III) and NO potentially cooperated to accelerate AOM. One negative control was fed CH and NO, and four treatment reactors were supplemented with CH, NO and ferric citrate (FC)/ferric chloride (FCH)/ chelate iron (FCI)/ferric hydroxide (FH) and were anaerobically operated for 1200 days to verify the synergy and promicrobial roles of Fe(III) and NO in improving AOM. The changes in gas and ion profiles were observed in the reactors, and microbial development was studied using 16S rRNA gene sequencing with the Illumina platform. The results indicated that the combined Fe(III) and NO treatment improved AOM, and their synergy followed the order of FC > FCI > FCH > FH. The biochemical reaction of Fe with NO and its secondary process accelerated electron transfer to microbial cells and subsequently enhanced AOM in the reactors. The total organic carbon (TOC) content, NH content, NO content, and pH value altered the dominant bacteria the most in the FC reactor, FCI, FCH, and FH groups, respectively. Several dominant bacterial species were enriched, whereas only two archaea were highly concentrated in the FC and FCI groups. Only bacteria were detected in the FCH group, and archaea contributed substantially to the FH group. These findings contribute to an improved understanding of the interactions among nitrogen, iron and CH that are paramount to accelerating the process of AOM for engineering applications.

摘要

单独的硝酸盐(NO)或三价铁(Fe(III))驱动的甲烷厌氧氧化(AOM)受到缓慢的电子传递和微生物富集效果不佳的限制。Fe(III)和 NO 之间的灵活偶联可能协同作用以加速 AOM。一个阴性对照中添加了 CH 和 NO,四个处理反应器中补充了 CH、NO 和柠檬酸铁(FC)/氯化铁(FCH)/ 螯合铁(FCI)/ 氢氧化铁(FH),并在厌氧条件下运行 1200 天,以验证 Fe(III)和 NO 在提高 AOM 中的协同作用和促进微生物的作用。观察了反应器中气体和离子分布的变化,并使用 Illumina 平台的 16S rRNA 基因测序研究了微生物的发展。结果表明,组合的 Fe(III)和 NO 处理提高了 AOM,其协同作用的顺序为 FC>FCI>FCH>FH。Fe 与 NO 的生化反应及其二次过程加速了电子向微生物细胞的传递,从而增强了反应器中的 AOM。总有机碳(TOC)含量、NH 含量、NO 含量和 pH 值分别改变了 FC 反应器中占主导地位的细菌,FCI、FCH 和 FH 组中分别改变了 NH 含量、NO 含量和 pH 值。在 FC 和 FCI 组中富集了几种优势细菌,而只有两种古菌在 FC 和 FCI 组中高度集中。仅在 FCH 组中检测到细菌,而在 FH 组中古菌贡献很大。这些发现有助于更好地理解氮、铁和 CH 之间的相互作用,这些相互作用对加速工程应用中的 AOM 过程至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验