Suppr超能文献

容积调强弧形治疗计划的虚拟患者特异性质量保证的前瞻性临床验证。

Prospective Clinical Validation of Virtual Patient-Specific Quality Assurance of Volumetric Modulated Arc Therapy Radiation Therapy Plans.

机构信息

Department of Radiation Oncology, University of California, San Francisco, California.

Department of Radiation Oncology, University of California, San Francisco, California.

出版信息

Int J Radiat Oncol Biol Phys. 2022 Aug 1;113(5):1091-1102. doi: 10.1016/j.ijrobp.2022.04.040. Epub 2022 May 6.

Abstract

PURPOSE

Performing measurement-based patient-specific quality assurance (PSQA) is recognized as a resource-intensive and time inefficient task in the radiation therapy treatment workflow. Paired with technological refinements in modern radiation therapy, research toward measurement-free PSQA has seen increased interest during the past 5 years. However, these efforts have not been clinically implemented or prospectively validated in the United States. We propose a virtual QA (VQA) system and workflow to assess the safety and workload reduction of measurement-free PSQA.

METHODS

An XGBoost machine learning model was designed to predict PSQA outcomes of volumetric modulated arc therapy plans, represented as percent differences between the measured ion chamber point dose in a phantom and the corresponding planned dose. The final model was deployed within a web application to predict PSQA outcomes of clinical plans within an existing clinical workflow. The application also displays relevant feature importance and plan-specific distribution analyses relative to database plans for documentation and to aid physicist interpretation and evaluation. VQA predictions were prospectively validated over 3 months of measurements at our clinic to assess safety and efficiency gains.

RESULTS

Over 3 months, VQA predictions for 445 volumetric modulated arc therapy plans were prospectively validated at our institution. VQA predictions for these plans had a mean absolute error of 1.08% ± 0.77%, with a maximum absolute error of 2.98%. Using a 1% prediction threshold (ie, plans predicted to have an absolute error <1% would not require a measurement) would yield a 69.2% reduction in QA workload, saving 32.5 hours per month on average, with 81.5% sensitivity, 72.4% specificity, and an area under the curve of 0.81 at a 3% clinical threshold and 100% sensitivity, 70% specificity, and an area under the curve of 0.93 at a 4% clinical threshold.

CONCLUSIONS

This is the first prospective clinical implementation and validation of VQA in the United States, which we observed to be efficient. Using a conservative threshold, VQA can substantially reduce the number of required measurements for PSQA, leading to more effective allocation of clinical resources.

摘要

目的

在放射治疗治疗工作流程中,进行基于测量的患者特定质量保证(PSQA)被认为是一项资源密集型且效率低下的任务。随着现代放射治疗技术的不断改进,过去 5 年来,人们对无测量 PSQA 的研究兴趣日益增加。然而,这些努力尚未在美国得到临床实施或前瞻性验证。我们提出了一种虚拟 QA(VQA)系统和工作流程,以评估无测量 PSQA 的安全性和工作量减少。

方法

设计了一个 XGBoost 机器学习模型,用于预测容积调强弧形治疗计划的 PSQA 结果,表现为体模中测量的离子室点剂量与相应计划剂量之间的百分比差异。最终模型部署在一个 Web 应用程序中,用于预测现有临床工作流程中临床计划的 PSQA 结果。该应用程序还显示了与数据库计划相关的相关特征重要性和计划特定分布分析,用于记录并帮助物理学家解释和评估。在我们的诊所进行了为期 3 个月的测量,对 VQA 预测进行了前瞻性验证,以评估安全性和效率提高。

结果

在 3 个月的时间里,我们的机构对 445 个容积调强弧形治疗计划的 VQA 预测进行了前瞻性验证。这些计划的 VQA 预测平均绝对误差为 1.08%±0.77%,最大绝对误差为 2.98%。使用 1%的预测阈值(即,预测绝对误差<1%的计划不需要进行测量)将使 QA 工作量减少 69.2%,平均每月节省 32.5 小时,灵敏度为 81.5%,特异性为 72.4%,曲线下面积为 0.81,临床阈值为 3%,灵敏度为 100%,特异性为 70%,曲线下面积为 0.93,临床阈值为 4%。

结论

这是美国首次对 VQA 进行前瞻性临床实施和验证,我们观察到它是有效的。使用保守的阈值,VQA 可以大大减少 PSQA 所需的测量数量,从而更有效地分配临床资源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验